Identification of linear parameter varying models

被引:286
作者
Bamieh, B [1 ]
Giarré, L
机构
[1] Univ Calif Santa Barbara, Dept Mech & Environm Engn, Santa Barbara, CA 93106 USA
[2] Univ Palermo, Dipartimento Ingn Automat & Informat, I-90128 Palermo, Italy
关键词
identification; LPV models; persistence of excitation;
D O I
10.1002/rnc.706
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider identification of a certain class of discrete-time nonlinear systems known as linear parameter varying system. We assume that inputs, outputs and the scheduling parameters are directly measured, and a form of the functional dependence of the system coefficients on the parameters is known. We show how this identification problem can be reduced to a linear regression, and provide compact formulae for the corresponding least mean square and recursive least-squares algorithms. We derive conditions on persistency of excitation in terms of the inputs and scheduling parameter trajectories when the functional dependence is of polynomial type. These conditions have a natural polynomial interpolation interpretation, and do not require the scheduling parameter trajectories to vary slowly. This method is illustrated with a simulation example using two different parameter trajectories. Copyright (C) 2002 John Wiley Sons, Ltd.
引用
收藏
页码:841 / 853
页数:13
相关论文
共 18 条