Real-Time NMR Investigations of Structural Changes in Silicon Electrodes for Lithium-Ion Batteries

被引:608
作者
Key, Baris [1 ]
Bhattacharyya, Rangeet [1 ]
Morcrette, Mathieu [2 ]
Seznec, Vincent [2 ]
Tarascon, Jean-Marie [2 ]
Grey, Clare P. [1 ]
机构
[1] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA
[2] Univ Picardie Jules Verne, LRCS, CNRS, UMR6007, F-80039 Amiens, France
基金
美国国家科学基金会;
关键词
MAGNETIC-RESONANCE OBSERVATION; PHASE; INSERTION; ANODES;
D O I
10.1021/ja8086278
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium-ion batteries (LIBs) containing silicon negative electrodes have been the subject of much recent investigation because of the extremely large gravimetric and volumetric capacity of silicon. The crystalline-to-amorphous phase transition that occurs on electrochemical Li insertion into crystalline Si, during the first discharge, hinders attempts to link structure in these systems with electrochemical performance. We apply a combination of static, in situ and magic angle sample spinning, ex Situ 7 Li nuclear magnetic resonance (NMR) studies to investigate the changes in local structure that occur in an actual working LIB. The first discharge occurs via the formation of isolated Si atoms and smaller Si-Si clusters embedded in a Li matrix; the latter are broken apart at the end of the discharge, forming isolated Si atoms. A spontaneous reaction of-the lithium silicide with the electrolyte is directly observed in the in situ NMR experiments; this mechanism results in self-discharge and potential capacity loss. The rate of this self-discharge process is much slower when CIVIC (carboxymethylcellulose) is used as the binder.
引用
收藏
页码:9239 / 9249
页数:11
相关论文
共 26 条
  • [1] EFFECTS OF DIFFUSION ON FREE PRECESSION IN NUCLEAR MAGNETIC RESONANCE EXPERIMENTS
    CARR, HY
    PURCELL, EM
    [J]. PHYSICAL REVIEW, 1954, 94 (03): : 630 - 638
  • [2] High-performance lithium battery anodes using silicon nanowires
    Chan, Candace K.
    Peng, Hailin
    Liu, Gao
    McIlwrath, Kevin
    Zhang, Xiao Feng
    Huggins, Robert A.
    Cui, Yi
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (01) : 31 - 35
  • [3] In situ 7Li-nuclear magnetic resonance observation of reversible lithium insertion into disordered carbons
    Chevallier, F
    Letellier, M
    Morcrette, M
    Tarascon, JM
    Frackowiak, E
    Rouzaud, JN
    Béguin, F
    [J]. ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (11) : A225 - A228
  • [4] FRANK U, 1975, Z NATURFORSCH B, VB 30, P10
  • [5] 7Li NMR study of intercalated lithium in curved carbon lattices
    Gerald, RE
    Klingler, RJ
    Sandí, G
    Johnson, CS
    Scanlon, LG
    Rathke, JW
    [J]. JOURNAL OF POWER SOURCES, 2000, 89 (02) : 237 - 243
  • [6] NMR studies of cathode materials for lithium-ion rechargeable batteries
    Grey, CP
    Dupré, N
    [J]. CHEMICAL REVIEWS, 2004, 104 (10) : 4493 - 4512
  • [7] In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon
    Hatchard, TD
    Dahn, JR
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (06) : A838 - A842
  • [8] Silicon/graphite composite electrodes for high-capacity anodes:: Influence of binder chemistry on cycling stability
    Hochgatterer, N. S.
    Schweiger, M. R.
    Koller, S.
    Raimann, P. R.
    Woehrle, T.
    Wurm, C.
    Winter, M.
    [J]. ELECTROCHEMICAL AND SOLID STATE LETTERS, 2008, 11 (05) : A76 - A80
  • [9] Nano silicon for lithium-ion batteries
    Holzapfel, Michael
    Buqa, Hilmi
    Hardwick, Laurence J.
    Hahn, Matthias
    Wuersig, Andreas
    Scheifele, Werner
    Novak, Petr
    Koetz, Ruediger
    Veit, Claudia
    Petrat, Frank-Martin
    [J]. ELECTROCHIMICA ACTA, 2006, 52 (03) : 973 - 978
  • [10] NOTIZ UBER DIE VERBINDUNGEN ZWISCHEN LITHIUM UND SILICIUM
    KLEMM, W
    STRUCK, M
    [J]. ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 1955, 278 (3-4): : 117 - 121