Nephrogenic diabetes insipidus in mice lacking aquaporin-3 water channels

被引:306
作者
Ma, TH
Song, YL
Yang, BX
Gillespie, A
Carlson, EJ
Epstein, CJ
Verkman, AS [1 ]
机构
[1] Univ Calif San Francisco, Cardiovasc Res Inst, Dept Med, San Francisco, CA 94143 USA
[2] Univ Calif San Francisco, Cardiovasc Res Inst, Dept Physiol, San Francisco, CA 94143 USA
[3] Univ Calif San Francisco, Cardiovasc Res Inst, Dept Pediat, San Francisco, CA 94143 USA
关键词
water transport; AQP3; kidney; urinary-concentrating mechanism; polyuria;
D O I
10.1073/pnas.080499597
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Aquaporin-3 (AQP3) is a water channel expressed at the basolateral plasma membrane of kidney collecting-duct epithelial cells. The mouse AQP3 cDNA was isolated and encodes a 292-amino acid water/glycerol-transporting glycoprotein expressed in kidney, large airways, eye, urinary bladder, skin, and gastrointestinal tract. The mouse AQP3 gene was analyzed, and AQP3 null mice were generated by targeted gene disruption. The growth and phenotype of AQP3 null mice were grossly normal except for polyuria. AQP3 deletion had little eff ect on AQP1 or AQP4 protein expression but decreased AQP2 protein expression particularly in renal cortex. Fluid consumption in AQP3 null mice was more than 10-fold greater than that in wild-type litter mates, and urine osmolality (<275 milliosmol) was much lower than in wild-type mice (>1,200 milliosmol), After 1-desamino-8-D-arginine-vasopressin administration or water deprivation, the AQP3 null mice were able to concentrate their urine partially to approximate to 30% of that in wild-type mice. Osmotic water permeability of cortical collecting-duct basolateral membrane, measured by a spatial filtering optics method, was > 3-fold reduced by AQP3 deletion. To test the hypothesis that the residual concentrating ability of AQP3 null mice was due to the inner medullary collecting-duct water channel AQP4 AQP3/AQP4 double-knockout mice were generated. The double-knockout mice had greater impairment of urinary-concentrating ability than did the AQP3 single-knockout mice. Our findings establish a form of nephrogenic diabetes insipidus produced by impaired water permeability in collecting-duct basolateral membrane. Basolateral membrane aquaporins may thus provide blood-accessible targets for drug discovery of aquaretic inhibitors.
引用
收藏
页码:4386 / 4391
页数:6
相关论文
共 35 条
[1]   WATER-DEPRIVATION - EFFECTS ON FLUID AND ELECTROLYTE HANDLING AND PLASMA BIOCHEMISTRY IN LONG-EVANS AND BRATTLEBORO RATS [J].
BENNETT, T ;
GARDINER, SM .
JOURNAL OF PHYSIOLOGY-LONDON, 1987, 385 :35-48
[2]   Fourfold reduction of water permeability in inner medullary collecting duct of aquaporin-4 knockout mice [J].
Chou, CL ;
Ma, TH ;
Yang, BX ;
Knepper, MA ;
Verkman, S .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 1998, 274 (02) :C549-C554
[3]   Reduced water permeability and altered ultrastructure in thin descending limb of Henle in aquaporin-1 null mice [J].
Chou, CL ;
Knepper, MA ;
van Hoek, AN ;
Brown, D ;
Yang, BX ;
Ma, TH ;
Verkman, AS .
JOURNAL OF CLINICAL INVESTIGATION, 1999, 103 (04) :491-496
[4]   ULTRASTRUCTURE OF DISTAL NEPHRON CELLS IN RAT RENAL-CORTEX [J].
DORUP, J .
JOURNAL OF ULTRASTRUCTURE RESEARCH, 1985, 92 (1-2) :101-118
[5]   AQUAPORIN-3 WATER CHANNEL LOCALIZATION AND REGULATION IN RAT-KIDNEY [J].
ECELBARGER, CA ;
TERRIS, J ;
FRINDT, G ;
ECHEVARRIA, M ;
MARPLES, D ;
NIELSEN, S ;
KNEPPER, MA .
AMERICAN JOURNAL OF PHYSIOLOGY-RENAL FLUID AND ELECTROLYTE PHYSIOLOGY, 1995, 269 (05) :F663-F672
[6]   CLONING AND EXPRESSION OF AQP3, A WATER CHANNEL FROM THE MEDULLARY COLLECTING DUCT OF RAT-KIDNEY [J].
ECHEVARRIA, M ;
WINDHAGER, EE ;
TATE, SS ;
FRINDT, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (23) :10997-11001
[7]   Selectivity of the renal collecting duct water channel aquaporin-3 [J].
Echevarria, M ;
Windhager, EE ;
Frindt, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (41) :25079-25082
[8]   Plasma membrane water permeability of cultured cells and epithelia measured by light microscopy with spatial filtering [J].
Farinas, J ;
Kneen, M ;
Moore, M ;
Verkman, AS .
JOURNAL OF GENERAL PHYSIOLOGY, 1997, 110 (03) :283-296
[9]   WATER PERMEABILITY OF APICAL AND BASOLATERAL CELL-MEMBRANES OF RAT INNER MEDULLARY COLLECTING DUCT [J].
FLAMION, B ;
SPRING, KR .
AMERICAN JOURNAL OF PHYSIOLOGY, 1990, 259 (06) :F986-F999
[10]   IMMUNOLOCALIZATION OF THE MERCURIAL-INSENSITIVE WATER CHANNEL AND GLYCEROL INTRINSIC PROTEIN IN EPITHELIAL-CELL PLASMA-MEMBRANES [J].
FRIGERI, A ;
GROPPER, MA ;
TURCK, CW ;
VERKMAN, AS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (10) :4328-4331