An Escherichia coli expression system was used to generate hexahistidyl-tagged plant sesquiterpene cyclases, which were readily purified by a single affinity chromatographic step. Genes for Hyoscyamus muticus vetispiradiene synthase (HVS), a chimeric 5-epi-aristolochene synthase (CH3), and a chimeric sesquiterpene cyclase possessing multifunctional epi-aristolochene and vetispiradiene activity (CH4) were expressed in bacterial cells, which resulted in the sesquiterpene cyclases accumulating to 50% of the total protein and 35% of the soluble protein. From initial velocity experiments, the Michaelis constant for HVS was 3.5 mu M, while CH3 and CH4 exhibited smaller values of 0.7 and 0.4 mu M, respectively. Steady-stale catalytic constants were from 0.02 to 0.04 s(-1). A combination of pre-steady-state rapid quench experiments, isotope trapping experiments, and experiments to measure the burst rate constant as a function of substrate concentration revealed that turnover in all three cyclases is limited by a step after the initial chemical step involving rupture of the carbon-oxygen bond in farnesyl diphosphate (FPP). Rate constants for the limiting step were 10-70-fold smaller than for the initial chemical step, Dissociation constants for the enzyme-substrate complex (20-70 mu M) were determined from the pre-steady-state experiments and were significantly larger than the observed Michaelis constants. A mechanism that involves an initial, rapid equilibration of enzyme with substrate to form an enzyme-substrate complex, followed by a slower conversion of FPP to an enzyme-bound hydrocarbon and a subsequent rate-limiting step, is proposed for the three enzymes, Interestingly, the multifunctional chimeric enzyme CH4 exhibited both a righter binding of FPP and a faster conversion of FPP to products than either of its wild-type parents.