Role of oxidative stress in hypoxia-reoxygenation injury to cultured rat hepatic sinusoidal endothelial cells

被引:43
作者
Samarasinghe, DA [1 ]
Tapner, M [1 ]
Farrell, GC [1 ]
机构
[1] Univ Sydney, Westmead Hosp, Dept Med, Storr Liver Unit, Westmead, NSW 2145, Australia
关键词
D O I
10.1002/hep.510310124
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
To characterize the role of oxidative stress in cultured rat sinusoidal endothelial cells, we studied the production of superoxide after reoxygenation, the relationship of reduced glutathione (GSH) levels to cell injury, and the protective efficacy of antioxidants. Hypoxia (pO(2) 1-2 mm Hg) was achieved by culturing cells under 95% N(2)5% CO2 for 4 hours. Reoxygenation was then reestablished, and viability was determined at 24 hours by trypan blue exclusion; putative protective agents were added at the time of reoxygenation (4 hours). As previously reported, reoxygenation after 4 hours hypoxia accentuated sinusoidal cell death fourfold compared with hypoxic or normoxic controls (P <.0001). Superoxide was not produced on reoxygenation, and superoxide dismutase provided no protection against reoxygenation Injury. Cellular levels of GSH fell to 37 +/- 4% of normoxic controls (P <.0001) following reoxygenation. These changes were essentially abrogated by Trolox (Aldrich Chemical Co., Milwaukee, WI) and dimethyl sulfoxide, both of which also completely protected against reoxygenation injury. When cellular GSH levels were lowered by addition of diethylmaleate (which conjugates GSH), this reduced the viability of endothelial cells cultured under normoxic conditions and greatly augmented reoxygenation injury. Conversely, addition of exogenous GSH partially protected endothelial cells against hypoxia-reoxygenation injury. Desferrioxamine also protected against reoxygenation injury, but catalase was only partly protective. It is concluded that sinusoidal endothelial cells undergo significant intracellular oxidative stress following reoxygenation, and their viability is critically dependent on GSH levels. Reactive oxygen species are likely mediators of oxidative stress in hepatic sinusoidal endothelial cells.
引用
收藏
页码:160 / 165
页数:6
相关论文
共 41 条
[1]  
Bissell D M, 1980, Ann N Y Acad Sci, V349, P85, DOI 10.1111/j.1749-6632.1980.tb29518.x
[2]   Direct cytotoxicity of hypoxia-reoxygenation towards sinusoidal endothelial cells in the rat [J].
Blanc, MC ;
Housset, C ;
Lasnier, E ;
Rey, C ;
Capeau, J ;
Giboudeau, J ;
Poupon, R ;
Vaudourdolle, M .
LIVER, 1999, 19 (01) :42-49
[3]   MECHANISM OF HYPOXIC INJURY TO PULMONARY-ARTERY ENDOTHELIAL-CELL PLASMA-MEMBRANES [J].
BLOCK, ER ;
PATEL, JM ;
EDWARDS, D .
AMERICAN JOURNAL OF PHYSIOLOGY, 1989, 257 (02) :C223-C231
[4]   THE PECKING ORDER OF FREE-RADICALS AND ANTIOXIDANTS - LIPID-PEROXIDATION, ALPHA-TOCOPHEROL, AND ASCORBATE [J].
BUETTNER, GR .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1993, 300 (02) :535-543
[5]   KUPFFER CELL ACTIVATION AND ENDOTHELIAL-CELL DAMAGE AFTER STORAGE OF RAT LIVERS - EFFECTS OF REPERFUSION [J].
CALDWELLKENKEL, JC ;
CURRIN, RT ;
TANAKA, Y ;
THURMAN, RG ;
LEMASTERS, JJ .
HEPATOLOGY, 1991, 13 (01) :83-95
[6]   REPERFUSION INJURY TO ENDOTHELIAL-CELLS FOLLOWING COLD ISCHEMIC STORAGE OF RAT LIVERS [J].
CALDWELLKENKEL, JC ;
CURRIN, RT ;
TANAKA, Y ;
THURMAN, RG ;
LEMASTERS, JJ .
HEPATOLOGY, 1989, 10 (03) :292-299
[7]   HYDROPEROXIDE METABOLISM IN MAMMALIAN ORGANS [J].
CHANCE, B ;
SIES, H ;
BOVERIS, A .
PHYSIOLOGICAL REVIEWS, 1979, 59 (03) :527-605
[8]   PRESERVATION AND REPERFUSION INJURIES IN LIVER ALLOGRAFTS - AN OVERVIEW AND SYNTHESIS OF CURRENT STUDIES [J].
CLAVIEN, PA ;
HARVEY, PRC ;
STRASBERG, SM .
TRANSPLANTATION, 1992, 53 (05) :957-978
[9]   CHANGES IN THE CARDIAC GLUTATHIONE STATUS AFTER ISCHEMIA AND REPERFUSION [J].
CURELLO, S ;
CECONI, C ;
BIGOLI, C ;
FERRARI, R ;
ALBERTINI, A ;
GUARNIERI, C .
EXPERIENTIA, 1985, 41 (01) :42-43
[10]  
DeLeve LD, 1996, HEPATOLOGY, V23, P589