The LEF-1 high-mobility group domain undergoes a disorder-to-order transition upon formation of a complex with cognate DNA

被引:58
作者
Love, JJ
Li, X
Chung, J
Dyson, HJ
Wright, PE
机构
[1] Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA
[2] Scripps Res Inst, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA
关键词
D O I
10.1021/bi049591m
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Lymphoid enhancer-binding factor-1 (LEF-1), a member of the high-mobility group (HMG) family of proteins, functions as an architectural transcription factor. In complex with its cognate DNA, the LEF-1 domain is highly ordered, and its NMR spectra are characteristic of a folded globular protein. In contrast, the uncomplexed protein exhibits NMR evidence of substantial conformational heterogeneity, although circular dichroism spectra indicate that much of the alpha-helical secondary structure of the DNA-bound state is retained in the free protein. Heteronuclear NMR experiments performed on the free LEF-1 domain reveal that helix II and helix III of the HMG domain are folded, although helix III is truncated at its C-terminal end relative to the DNA-bound protein. The major hydrophobic core between helices II and III appears to be formed, but the minor core near the C-terminus of helix III is unstructured in the free protein. Backbone resonances of helix I are undetectable, probably as a result of exchange broadening due to fluctuations between two or more conformations on a microsecond-to-millisecond time scale. On the basis of the circular dichroism spectrum, this region of the polypeptide appears to adopt helical structure but the helix is not fully stabilized in the absence of DNA. These findings argue that, prior to binding, bending, and distorting DNA, the HMG domain of LEF-1 exists in a segmentally disordered or partially folded state. Upon complex formation, the protein domain undergoes a cooperative folding transition with DNA to a highly ordered and well-folded state.
引用
收藏
页码:8725 / 8734
页数:10
相关论文
共 63 条
[1]   Solution structure of the HMG protein NHP6A and its interaction with DNA reveals the structural determinants for non-sequence-specific binding [J].
Allain, FHT ;
Yen, YM ;
Masse, JE ;
Schultze, P ;
Dieckmann, T ;
Johnson, RC ;
Feigon, J .
EMBO JOURNAL, 1999, 18 (09) :2563-2579
[2]   THE HMG-1 BOX PROTEIN FAMILY - CLASSIFICATION AND FUNCTIONAL-RELATIONSHIPS [J].
BAXEVANIS, AD ;
LANDSMAN, D .
NUCLEIC ACIDS RESEARCH, 1995, 23 (09) :1604-1613
[3]   CONSIDERATION OF POSSIBILITY THAT SLOW STEP IN PROTEIN DENATURATION REACTIONS IS DUE TO CIS-TRANS ISOMERISM OF PROLINE RESIDUES [J].
BRANDTS, JF ;
HALVORSON, HR ;
BRENNAN, M .
BIOCHEMISTRY, 1975, 14 (22) :4953-4963
[4]   HIGH-LEVEL EXPRESSION OF RECOMBINANT GENES IN ESCHERICHIA-COLI IS DEPENDENT ON THE AVAILABILITY OF THE DNAY GENE-PRODUCT [J].
BRINKMANN, U ;
MATTES, RE ;
BUCKEL, P .
GENE, 1989, 85 (01) :109-114
[5]   Backbone dynamics of the A-domain of HMG1 as studied by N-15 NMR spectroscopy [J].
Broadhurst, RW ;
Hardman, CH ;
Thomas, JO ;
Laue, ED .
BIOCHEMISTRY, 1995, 34 (51) :16608-16617
[6]   Solution structure and backbone dynamics of the DNA-binding domain of mouse Sox-5 [J].
Cary, PD ;
Read, CM ;
Davis, B ;
Driscoll, PC ;
Crane-Robinson, C .
PROTEIN SCIENCE, 2001, 10 (01) :83-98
[7]   HMG-D complexed to a bulge DNA: An NMR model [J].
Cerdan, R ;
Payet, D ;
Yang, JC ;
Travers, AA ;
Neuhaus, D .
PROTEIN SCIENCE, 2001, 10 (03) :504-518
[8]   LARGE DIFFERENCES IN THE HELIX PROPENSITIES OF ALANINE AND GLYCINE [J].
CHAKRABARTTY, A ;
SCHELLMAN, JA ;
BALDWIN, RL .
NATURE, 1991, 351 (6327) :586-588
[9]   DETERMINATION OF HELIX AND BETA-FORM OF PROTEINS IN AQUEOUS-SOLUTION BY CIRCULAR-DICHROISM [J].
CHEN, YH ;
YANG, JT ;
CHAU, KH .
BIOCHEMISTRY, 1974, 13 (16) :3350-3359
[10]   HMG-D IS AN ARCHITECTURE-SPECIFIC PROTEIN THAT PREFERENTIALLY BINDS TO DNA CONTAINING THE DINUCLEOTIDE TG [J].
CHURCHILL, MEA ;
JONES, DNM ;
GLASER, T ;
HEFNER, H ;
SEARLES, MA ;
TRAVERS, AA .
EMBO JOURNAL, 1995, 14 (06) :1264-1275