Synthetic miniprion PrP106

被引:26
作者
Bonetto, V
Massignan, T
Chiesa, R
Morbin, M
Mazzoleni, G
Diomede, L
Angeretti, N
Colombo, L
Forloni, G
Tagliavini, F
Salmona, M
机构
[1] Dulbecco Telethon Inst, I-20157 Milan, Italy
[2] Dept Mol Pharmacol & Biochem, I-20157 Milan, Italy
[3] Dept Neurosci, I-20157 Milan, Italy
[4] Ist Ric Farmacol Mario Negri, I-20157 Milan, Italy
[5] Ist Neurol Carlo Besta, I-20133 Milan, Italy
关键词
D O I
10.1074/jbc.M203275200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Elucidation of structure and biological properties of the prion protein scrapie (PrPSc) is fundamental to an understanding of the mechanism of conformational transition of cellular (PrPC) into disease-specific isoforms and the pathogenesis of prion diseases. Unfortunately, the insolubility and heterogeneity of PrPSc have limited these studies. The observation that a construct of 106 amino acids (termed PrP106 or miniprion), derived from mouse PrP and containing two deletions (Delta23-88, Delta141-176), becomes protease-resistant when expressed in scrapie-infected neuroblastoma cells and sustains prion replication when expressed in PrP0/0 mice prompted us to generate a corresponding synthetic peptide (sPrP106) to be used for biochemical and cell culture studies. sPrP106 was obtained successfully with a straightforward procedure, which combines classical stepwise solid phase synthesis with a purification strategy based on transient labeling with a lipophilic chromatographic probe. sPrP106 readily adopted a beta-sheet structure, aggregated into branched filamentous structures without ultrastructural and tinctorial properties of amyloid, exhibited a proteinase K-resistant domain spanning residues 134-217, was highly toxic to primary neuronal cultures, and induced a remarkable increase in membrane microviscosity. These features are central properties of PrPSc and make sPrP106 an excellent tool for investigating the molecular basis of the conformational conversion of PrPC into PrPSc and prion disease pathogenesis.
引用
收藏
页码:31327 / 31334
页数:8
相关论文
共 26 条
[1]  
BALL HL, 1992, INT J PEPT PROT RES, V40, P370
[2]   Engineering the prion protein using chemical synthesis [J].
Ball, HL ;
King, DS ;
Cohen, FE ;
Prusiner, SB ;
Baldwin, MA .
JOURNAL OF PEPTIDE RESEARCH, 2001, 58 (05) :357-374
[3]   Self-assembly of recombinant prion protein of 106 residues [J].
Baskakov, IV ;
Aagaard, C ;
Mehlhorn, I ;
Wille, H ;
Groth, D ;
Baldwin, MA ;
Prusiner, SB ;
Cohen, FE .
BIOCHEMISTRY, 2000, 39 (10) :2792-2804
[4]   SYNTHESIS OF PROTEINS BY NATIVE CHEMICAL LIGATION [J].
DAWSON, PE ;
MUIR, TW ;
CLARKLEWIS, I ;
KENT, SBH .
SCIENCE, 1994, 266 (5186) :776-779
[5]  
DEGIOIA L, 1994, J BIOL CHEM, V269, P7859
[6]   AN ALGORITHM FOR PROTEIN SECONDARY STRUCTURE PREDICTION BASED ON CLASS PREDICTION [J].
DELEAGE, G ;
ROUX, B .
PROTEIN ENGINEERING, 1987, 1 (04) :289-294
[7]   Activation effects of a prion protein fragment [PrP-(106-126)] on human leucocytes [J].
Diomede, L ;
Sozzani, S ;
Luini, W ;
Algeri, M ;
DeGioia, L ;
Chiesa, R ;
Lievens, PMJ ;
Bugiani, O ;
Forloni, G ;
Tagliavini, F ;
Salmona, M .
BIOCHEMICAL JOURNAL, 1996, 320 :563-570
[8]   NEUROTOXICITY OF A PRION PROTEIN-FRAGMENT [J].
FORLONI, G ;
ANGERETTI, N ;
CHIESA, R ;
MONZANI, E ;
SALMONA, M ;
BUGIANI, O ;
TAGLIAVINI, F .
NATURE, 1993, 362 (6420) :543-546
[9]   A transmembrane form of the prion protein in neurodegenerative disease [J].
Hegde, RS ;
Mastrianni, JA ;
Scott, MR ;
DeFea, KA ;
Tremblay, P ;
Torchia, M ;
DeArmond, SJ ;
Prusiner, SB ;
Lingappa, VR .
SCIENCE, 1998, 279 (5352) :827-834
[10]   Reversible conversion of monomeric human prion protein between native and fibrilogenic conformations [J].
Jackson, GS ;
Hosszu, LLP ;
Power, A ;
Hill, AF ;
Kenney, J ;
Saibil, H ;
Craven, CJ ;
Waltho, JP ;
Clarke, AR ;
Collinge, J .
SCIENCE, 1999, 283 (5409) :1935-1937