Brittle stalk 2 encodes a putative glycosylphosphatidylinositol-anchored protein that affects mechanical strength of maize tissues by altering the composition and structure of secondary cell walls

被引:130
作者
Ching, Ada
Dhugga, Kanwarpal S.
Appenzeller, Laura
Meeley, Robert
Bourett, Timothy M.
Howard, Richard J.
Rafalski, Antoni
机构
[1] DuPont Co Inc, Crop Genet Res, Wilmington, DE 19880 USA
[2] Pioneer HiBred Int Inc, Crop Genet Res & Dev, Johnston, IA 50131 USA
关键词
Bk-2; brittle stalk; cellulose biosynthesis; cell wall; cobra-like; flexural strength; GPI-anchored protein; MPSS; secondary wall; stalk lodging; transposon-tagging; CELLULOSE SYNTHESIS; LINKAGE DISEQUILIBRIUM; EXPRESSION ANALYSIS; ARABIDOPSIS; SYNTHASE; GENES; IDENTIFICATION; BARLEY; COBRA; EXPANSION;
D O I
10.1007/s00425-006-0299-8
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
A spontaneous maize mutant, brittle stalk-2 (bk2-ref), exhibits dramatically reduced tissue mechanical strength. Reduction in mechanical strength in the stalk tissue was highly correlated with a reduction in the amount of cellulose and an uneven deposition of secondary cell wall material in the subepidermal and perivascular sclerenchyma fibers. Cell wall accounted for two-thirds of the observed reduction in dry matter content per unit length of the mutant stalk in comparison to the wildtype stalk. Although the cell wall composition was significantly altered in the mutant in comparison to the wildtype stalks, no compensation by lignin and cell wall matrix for reduced cellulose amount was observed. We demonstrate that Bk2 encodes a Cobra-like protein that is homologous to the rice Bc1 protein. In the bk2-ref gene, a 1 kb transposon-like element is inserted in the beginning of the second exon, disrupting the open reading frame. The Bk2 gene was expressed in the stalk, husk, root, and leaf tissues, but not in the embryo, endosperm, pollen, silk, or other tissues with comparatively few or no secondary cell wall containing cells. The highest expression was in the isolated vascular bundles. In agreement with its role in secondary wall formation, the expression pattern of the Bk2 gene was very similar to that of the ZmCesA10, ZmCesA11, and ZmCesA12 genes, which are known to be involved in secondary wall formation. We have isolated an independent Mutator-tagged allele of bk2, referred to as bk2-Mu7, the phenotype of which is similar to that of the spontaneous mutant. Our results demonstrate that mutations in the Bk2 gene affect stalk strength in maize by interfering with the deposition of cellulose in the secondary cell wall in fiber cells.
引用
收藏
页码:1174 / 1184
页数:11
相关论文
共 41 条
[1]   Oat-maize chromosome addition lines: A new system for mapping the maize genome [J].
Ananiev, EV ;
RieraLizarazu, O ;
Rines, HW ;
Phillips, RL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (08) :3524-3529
[2]   Cellulose synthesis in maize:: isolation and expression analysis of the cellulose synthase (CesA) gene family [J].
Appenzeller, L ;
Doblin, M ;
Barreiro, R ;
Wang, HY ;
Niu, XM ;
Kollipara, K ;
Carrigan, L ;
Tomes, D ;
Chapman, M ;
Dhugga, KS .
CELLULOSE, 2004, 11 (3-4) :287-299
[3]   CLONING AND CHARACTERIZATION OF THE MAIZE AN1 GENE [J].
BENSEN, RJ ;
JOHAL, GS ;
CRANE, VC ;
TOSSBERG, JT ;
SCHNABLE, PS ;
MEELEY, RB ;
BRIGGS, SP .
PLANT CELL, 1995, 7 (01) :75-84
[4]   Identification of glycosylphosphatidylinositol-anchored proteins in Arabidopsis. A proteomic and genomic analysis [J].
Borner, GHH ;
Lilley, KS ;
Stevens, TJ ;
Dupree, P .
PLANT PHYSIOLOGY, 2003, 132 (02) :568-577
[5]   Prediction of glycosylphosphatidylinositol-anchored proteins in arabidopsis. A genomic analysis [J].
Borner, GHH ;
Sherrier, DJ ;
Stevens, TJ ;
Arkin, IT ;
Dupree, P .
PLANT PHYSIOLOGY, 2002, 129 (02) :486-499
[6]   ADHESION OF COCHLIOBOLUS-HETEROSTROPHUS CONIDIA AND GERMLINGS TO LEAVES AND ARTIFICIAL SURFACES [J].
BRAUN, EJ ;
HOWARD, RJ .
EXPERIMENTAL MYCOLOGY, 1994, 18 (03) :211-220
[7]   Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays [J].
Brenner, S ;
Johnson, M ;
Bridgham, J ;
Golda, G ;
Lloyd, DH ;
Johnson, D ;
Luo, SJ ;
McCurdy, S ;
Foy, M ;
Ewan, M ;
Roth, R ;
George, D ;
Eletr, S ;
Albrecht, G ;
Vermaas, E ;
Williams, SR ;
Moon, K ;
Burcham, T ;
Pallas, M ;
DuBridge, RB ;
Kirchner, J ;
Fearon, K ;
Mao, J ;
Corcoran, K .
NATURE BIOTECHNOLOGY, 2000, 18 (06) :630-634
[8]   Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics [J].
Brown, DM ;
Zeef, LAH ;
Ellis, J ;
Goodacre, R ;
Turner, SR .
PLANT CELL, 2005, 17 (08) :2281-2295
[9]   The CesA gene family of barley. Quantitative analysis of transcripts reveals two groups of co-expressed genes [J].
Burton, RA ;
Shirley, NJ ;
King, BJ ;
Harvey, AJ ;
Fincher, GB .
PLANT PHYSIOLOGY, 2004, 134 (01) :224-236
[10]   SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines [J].
Ching, A ;
Caldwell, KS ;
Jung, M ;
Dolan, M ;
Smith, OS ;
Tingey, S ;
Morgante, M ;
Rafalski, AJ .
BMC GENETICS, 2002, 3 (1)