Dynamics of the firing probability of noisy integrate-and-fire neurons

被引:243
作者
Fourcaud, N
Brunel, N
机构
[1] Ecole Normale Super, Phys Stat Lab, F-75231 Paris 05, France
[2] Univ Paris 05, UFR Biomed, F-75006 Paris, France
关键词
D O I
10.1162/089976602320264015
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cortical neurons in vivo undergo a continuous bombardment due to synaptic activity, which acts as a major source of noise. Here, we investigate the effects of the noise filtering by synapses with various levels of realism on integrate-and-fire neuron dynamics. The noise input is modeled by white (for instantaneous synapses) or colored (for synapses with a finite relaxation time) noise. Analytical results for the modulation of firing probability in response to an oscillatory input current are obtained by expanding a Fokker-Planck equation for small parameters of the problem-when both the amplitude of the modulation is small compared to the background firing rate and the synaptic time constant is small compared to the membrane time constant. We report here the detailed calculations showing that if a synaptic decay time constant is included in the synaptic current model, the firing-rate modulation of the neuron due to an oscillatory input remains finite in the high-frequency limit with no phase lag. In addition, we characterize the low-frequency behavior and the behavior of the high-frequency limit for intermediate decay times. We also characterize the effects of introducing a rise time to the synaptic currents and the presence of several synaptic receptors with different kinetics. In both cases, we determine, using numerical simulations, an effective decay time constant that describes the neuronal response completely.
引用
收藏
页码:2057 / 2110
页数:54
相关论文
共 45 条
[1]   ASYNCHRONOUS STATES IN NETWORKS OF PULSE-COUPLED OSCILLATORS [J].
ABBOTT, LF ;
VANVREESWIJK, C .
PHYSICAL REVIEW E, 1993, 48 (02) :1483-1490
[2]  
ABRAMOWITZ M, 1970, TABLES MATH FUNCTION
[3]   QUANTITATIVE STUDY OF ATTRACTOR NEURAL NETWORK RETRIEVING AT LOW SPIKE RATES .1. SUBSTRATE SPIKES, RATES AND NEURONAL GAIN [J].
AMIT, DJ ;
TSODYKS, MV .
NETWORK-COMPUTATION IN NEURAL SYSTEMS, 1991, 2 (03) :259-273
[4]   Postsynaptic glutamate receptors and integrative properties of fast-spiking interneurons in the rat neocortex [J].
Angulo, MC ;
Rossier, J ;
Audinat, E .
JOURNAL OF NEUROPHYSIOLOGY, 1999, 82 (03) :1295-1302
[5]   Firing frequency of leaky integrate-and-fire neurons with synaptic current dynamics [J].
Brunel, N ;
Sergi, S .
JOURNAL OF THEORETICAL BIOLOGY, 1998, 195 (01) :87-95
[6]   Fast global oscillations in networks of integrate-and-fire neurons with low firing rates [J].
Brunel, N ;
Hakim, V .
NEURAL COMPUTATION, 1999, 11 (07) :1621-1671
[7]   Effects of synaptic noise and filtering on the frequency response of spiking neurons [J].
Brunel, N ;
Chance, FS ;
Fourcaud, N ;
Abbott, LF .
PHYSICAL REVIEW LETTERS, 2001, 86 (10) :2186-2189
[8]   Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons [J].
Brunel, N .
JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2000, 8 (03) :183-208
[9]   Analysis of integrate-and-fire neurons: Synchronization of synaptic input and spike output [J].
Burkitt, AN ;
Clark, GM .
NEURAL COMPUTATION, 1999, 11 (04) :871-901
[10]   SPONTANEOUS ACTIVITY OF NEURONS IN CATS CEREBRAL-CORTEX [J].
BURNS, BD ;
WEBB, AC .
PROCEEDINGS OF THE ROYAL SOCIETY SERIES B-BIOLOGICAL SCIENCES, 1976, 194 (1115) :211-223