Glass transition temperature of glucose, sucrose, and trehalose: An experimental and in silico study

被引:138
作者
Simperler, Alexandra
Kornherr, Andreas
Chopra, Reenu
Bonnet, P. Arnaud
Jones, William
Motherwell, W. D. Samuel
Zifferer, Gerhard
机构
[1] Univ Cambridge, Dept Chem, Pfizer Inst Pharmaceut Mat Sci, Cambridge CB2 1EW, England
[2] Univ Vienna, Inst Phys Chem, A-1090 Vienna, Austria
[3] Pfizer Inst Pharmaceut Mat Sci, Cambridge Crystallog Database Ctr, Cambridge CB2 1EZ, England
关键词
D O I
10.1021/jp063134t
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Isothermal-isobaric molecular dynamics simulations are used to calculate the specific volume of models of different amorphous carbohydrates ( glucose, sucrose, and trehalose) as a function of temperature. Plots of specific volume vs temperature exhibit a characteristic change in slope when the amorphous systems change from the glassy to the rubbery state. The intersection of the regression lines of data below ( glassy state) and above ( rubbery state) the change in slope provides the glass transition temperature (T-g). These predicted glass transition temperatures are compared to experimental Tg values as obtained from differential scanning calorimetry measurements. As expected, the predicted values are systematically higher than the experimental ones ( about 12-34 K) as the cooling rates of the modeling methods are about a factor of 1012 faster. Nevertheless, the calculated trend of T-g values agrees exactly with the experimental trend: Tg(glucose) < Tg(sucrose) < T-g(trehalose). Furthermore, the relative differences between the glass transition temperatures were also computed precisely, implying that atomistic molecular dynamics simulations can reproduce trends of T-g values in amorphous carbohydrates with high quality.
引用
收藏
页码:19678 / 19684
页数:7
相关论文
共 42 条
[1]   The Cambridge Structural Database: a quarter of a million crystal structures and rising [J].
Allen, FH .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 2002, 58 (3 PART 1) :380-388
[2]   MOLECULAR-DYNAMICS SIMULATIONS AT CONSTANT PRESSURE AND-OR TEMPERATURE [J].
ANDERSEN, HC .
JOURNAL OF CHEMICAL PHYSICS, 1980, 72 (04) :2384-2393
[3]  
[Anonymous], 2002, MAT STUD 2 2
[4]   New software for searching the Cambridge Structural Database and visualizing crystal structures [J].
Bruno, IJ ;
Cole, JC ;
Edgington, PR ;
Kessler, M ;
Macrae, CF ;
McCabe, P ;
Pearson, J ;
Taylor, R .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS, 2002, 58 :389-397
[5]   Cooling rate dependence of the glass transition temperature of polymer melts: Molecular dynamics study [J].
Buchholz, J ;
Paul, W ;
Varnik, F ;
Binder, K .
JOURNAL OF CHEMICAL PHYSICS, 2002, 117 (15) :7364-7372
[6]   Molecular modeling of energetic materials: The parameterization and validation of nitrate esters in the COMPASS force field [J].
Bunte, SW ;
Sun, H .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (11) :2477-2489
[7]   Crystal, melted and glassy states of glucose - A molecular dynamics simulation [J].
Caffarena, E ;
Grigera, JR .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1996, 92 (12) :2285-2289
[8]   Glass transition in aqueous solutions of glucose. Molecular dynamics simulation [J].
Caffarena, ER ;
Grigera, JR .
CARBOHYDRATE RESEARCH, 1997, 300 (01) :51-57
[9]   Non-isothermal structural relaxation and the glass transition temperature [J].
Cernosek, Z ;
Holubová, J ;
Cernosková, E .
SOLID STATE SCIENCES, 2003, 5 (08) :1087-1093
[10]   Molecular modeling of cellulose in amorphous state. Part I: model building and plastic deformation study [J].
Chen, W ;
Lickfield, GC ;
Yang, CQ .
POLYMER, 2004, 45 (03) :1063-1071