The HVE/CAND1 gene is required for the early patterning of leaf venation in Arabidopsis

被引:59
作者
Alonso-Peral, Maria Magdalena
Candela, Hector
del Pozo, Juan Carlos
Martinez-Laborda, Antonio
Ponce, Maria Rosa
Micol, Jose Luis
机构
[1] Univ Miguel Hernandez, Div Genet, Alicante 03202, Spain
[2] Univ Miguel Hernandez, Inst Bioingn, Alicante 03202, Spain
[3] Inst Nacl Invest & Tecnol Agraria & Alimentaria, Dept Biotechnol, Madrid 28040, Spain
[4] Univ Miguel Hernandez, Div Genet, Alicante 03550, Spain
来源
DEVELOPMENT | 2006年 / 133卷 / 19期
关键词
Arabidopsis; TIP120; CAND1; venation pattern formation; natural variation;
D O I
10.1242/dev.02554
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The hemivenata-1 (hve-1) recessive allele was isolated in a search for natural variations in the leaf venation pattern of Arabidopsis thaliana, where it was seen to cause extremely simple venation in vegetative leaves and cotyledons, increased shoot branching, and reduced root waving and fertility, traits that are reminiscent of some mutants deficient in auxin signaling. Reduced sensitivity to exogenous auxin was found in the hve-1 mutant, which otherwise displayed a wild-type response to auxin transport inhibitors. The HVE gene was positionally cloned and found to encode a CAND1 protein. The hve-1 mutation caused mis-splicing of the transcripts of the HVE/CAND1 gene and a vein phenotype indistinguishable from that of hve-2 and hve-3, two putatively null T-DNA alleles. Inflorescence size and fertility were more affected by hve-2 and hve-3, suggesting that hve-1 is hypomorphic. The simple venation pattern of hve plants seems to arise from an early patterning defect. We found that HVE/CAND1 binds to CULLIN1, and that the venation patterns of axr1 and hve mutants are similar, which suggest that ubiquitin-mediated auxin signaling is required for venation patterning in laminar organs, the only exception being cauline leaves. Our analyses of double mutant and transgenic plants indicated that auxin transport and perception act independently to pattern leaf veins, and that the HVE/CAND1 gene acts upstream of ATHB-8 at least in higher order veins, in a pathway that involves AXR1, but not LOP1, PIN1, CVP1 or CVP2.
引用
收藏
页码:3755 / 3766
页数:12
相关论文
共 66 条
[1]   Gradual shifts in sites of free-auxin production during leaf-primordium development and their role in vascular differentiation and leaf morphogenesis in Arabidopsis [J].
Aloni, R ;
Schwalm, K ;
Langhans, M ;
Ullrich, CI .
PLANTA, 2003, 216 (05) :841-853
[2]   Genome-wide Insertional mutagenesis of Arabidopsis thaliana [J].
Alonso, JM ;
Stepanova, AN ;
Leisse, TJ ;
Kim, CJ ;
Chen, HM ;
Shinn, P ;
Stevenson, DK ;
Zimmerman, J ;
Barajas, P ;
Cheuk, R ;
Gadrinab, C ;
Heller, C ;
Jeske, A ;
Koesema, E ;
Meyers, CC ;
Parker, H ;
Prednis, L ;
Ansari, Y ;
Choy, N ;
Deen, H ;
Geralt, M ;
Hazari, N ;
Hom, E ;
Karnes, M ;
Mulholland, C ;
Ndubaku, R ;
Schmidt, I ;
Guzman, P ;
Aguilar-Henonin, L ;
Schmid, M ;
Weigel, D ;
Carter, DE ;
Marchand, T ;
Risseeuw, E ;
Brogden, D ;
Zeko, A ;
Crosby, WL ;
Berry, CC ;
Ecker, JR .
SCIENCE, 2003, 301 (5633) :653-657
[3]   TIP120B: A novel TIP120-family protein that is expressed specifically in muscle tissues [J].
Aoki, T ;
Okada, N ;
Ishida, M ;
Yogosawa, S ;
Makino, Y ;
Tamura, TA .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1999, 261 (03) :911-916
[4]   Indole acetic acid distribution coincides with vascular differentiation pattern during Arabidopsis leaf ontogeny [J].
Avsian-Kretchmer, O ;
Cheng, JC ;
Chen, LJ ;
Moctezuma, E ;
Sung, ZR .
PLANT PHYSIOLOGY, 2002, 130 (01) :199-209
[5]  
Baima S, 1995, DEVELOPMENT, V121, P4171
[6]   The Arabidopsis ATHB-8 HD-zip protein acts as a differentiation-promoting transcription factor of the vascular meristems [J].
Baima, S ;
Possenti, M ;
Matteucci, A ;
Wisman, E ;
Altamura, MM ;
Ruberti, I ;
Morelli, G .
PLANT PHYSIOLOGY, 2001, 126 (02) :643-655
[7]  
Berná G, 1999, GENETICS, V152, P729
[8]   Venation pattern formation in Arabidopsis thaliana vegetative leaves [J].
Candela, H ;
Martínez-Laborda, A ;
Micol, JL .
DEVELOPMENTAL BIOLOGY, 1999, 205 (01) :205-216
[9]   Genetic regulation of vascular tissue patterning in Arabidopsis [J].
Carland, FM ;
Berg, BL ;
FitzGerald, JN ;
Jinamornphongs, S ;
Nelson, T ;
Keith, B .
PLANT CELL, 1999, 11 (11) :2123-2137
[10]  
Carland FM, 1996, DEVELOPMENT, V122, P1811