Host-based intrusion detection using self-organizing maps

被引:54
作者
Lichodzijewski, P [1 ]
Zincir-Heywood, AN [1 ]
Heywood, MI [1 ]
机构
[1] Dalhousie Univ, Fac Comp Sci, Halifax, NS, Canada
来源
PROCEEDING OF THE 2002 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-3 | 2002年
关键词
SOM; intrusion detection;
D O I
10.1109/IJCNN.2002.1007776
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hierarchical SOMs are applied to the problem of host based intrusion detection on computer networks. Unlike systems based on operating system audit trails, the approach operates on real-time data without extensive off-line training and with minimal expert knowledge. Specific recommendations are made regarding the representation of time, network parameters and SOM architecture.
引用
收藏
页码:1714 / 1719
页数:2
相关论文
共 7 条
[1]   Intrusion detection systems and multisensor data fusion [J].
Bass, T .
COMMUNICATIONS OF THE ACM, 2000, 43 (04) :99-105
[2]  
DAVE RN, 1997, IEEE T FUZZY SYST, V5, P2370
[3]  
Demuth H., 2004, Neural Network Toolbox For Use with MATLAB (Version 4)
[4]  
HAMMING RW, 1989, DIGITAL FILTES
[5]  
HOGLUND AJ, P INT JOINT C NEUR N, V5, P411
[6]   THE STATE-OF-THE-ART IN ONLINE HANDWRITING RECOGNITION [J].
TAPPERT, CC ;
SUEN, CY ;
WAKAHARA, T .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1990, 12 (08) :787-808
[7]   Clustering of the self-organizing map [J].
Vesanto, J ;
Alhoniemi, E .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2000, 11 (03) :586-600