Evaluating the generalization ability of support vector machines through the bootstrap

被引:41
作者
Anguita, D [1 ]
Boni, A [1 ]
Ridella, S [1 ]
机构
[1] Univ Genoa, Dept Biophys & Elect Engn, I-16145 Genoa, Italy
关键词
bootstrap; generalization; support vector machines; VC dimension;
D O I
10.1023/A:1009636300083
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The well-known bounds on the generalization ability of learning machines, based on the Vapnik-Chernovenkis (VC) dimension, are very loose when applied to Support Vector Machines (SVMs). In this work we evaluate the validity of the assumption that these bounds are, nevertheless, good indicators of the generalization ability of SVMs. We show that this assumption is, in general, true and assess its correctness, in a statistical sense, on several pattern recognition benchmarks through the use of the bootstrap technique.
引用
收藏
页码:51 / 58
页数:8
相关论文
共 15 条
[1]  
Anguita D, 1998, LECT NOTES COMPUT SC, V1401, P34, DOI 10.1007/BFb0037130
[2]  
ANGUITA D, 1999, P 3 INT S SOFT COMP
[3]  
[Anonymous], [No title captured], DOI DOI 10.1023/A:1009715923555
[4]  
BARTLETT PL, 1999, ADV KERNEL METHODS S
[5]  
Blake C.L., 1998, UCI repository of machine learning databases
[6]  
Cortes C., 1995, Mach. Learn., DOI [DOI 10.1023/A:1022627411411, 10.1007/BF00994018]
[7]  
CRISTIANINI N, 1998, NEUROCOLT2 TECHNICAL
[8]   Approximate statistical tests for comparing supervised classification learning algorithms [J].
Dietterich, TG .
NEURAL COMPUTATION, 1998, 10 (07) :1895-1923
[9]  
Efron B., 1993, INTRO BOOTSTRAP, V1st ed., DOI DOI 10.1201/9780429246593
[10]  
Geist A, 1994, PVM PARALLEL VIRTUAL