Functional and phylogenetic analysis of a DREB/CBF-like gene in perennial ryegrass (Lolium perenne L.)

被引:122
作者
Xiong, Yanwen
Fei, Shui-Zhang [1 ]
机构
[1] Iowa State Univ, Interdepartmental Plant Physiol & Mol Biol, Ames, IA 50011 USA
[2] Iowa State Univ, Dept Hort, Ames, IA 50011 USA
关键词
DREB/CBF; cold acclimation; freezing tolerance; Lolium perenne L; transgenic Arabidopsis;
D O I
10.1007/s00425-006-0273-5
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The dehydration responsive element binding proteins (DREB1)/C-repeat (CRT) binding factors (CBF) function as transcription factors and bind to the DRE/CRT cis-acting element (core motif: G/ACCGAC) commonly present in cold-regulated (COR) genes and subsequently upregulate the expression of such genes in Arabidopsis. We identified a DREB1A/CBF3-like gene, designated LpCBF3, from perennial ryegrass (Lolium perenne L.) by using RT-PCR and RACE (rapid amplification of cDNA end). The LpCBF3 gene contains all the conserved domains known to exist in other CBF genes. A comprehensive phylogenetic analysis using known and computationally identified CBF homologs in this study revealed that all monocot CBF genes are separately clustered from eudicot CBF genes and the LpCBF3 is the ortholog of rice OsDREB1A/CBF3 gene. Similar to other DREB1A/CBF3 homologs, expression of the LpCBF3 is induced by cold stress, but not by abscisic acid (ABA), drought, or salinity. Overexpression of the LpCBF3 cDNA in Arabidopsis induced expression of the Arabidopsis DREB1A/CBF3 target COR genes, COR15a and RD29A, without cold acclimation. Ion leakage in leaves of the overexpression transgenic plants was significantly reduced, an indication of enhanced freezing tolerance. Our data demonstrated that LpCBF3 not only resembles DREB/CBF genes of Arabidopsis, but is also capable of functioning as a transcriptional regulator in Arabidopsis, a species distant to the grass family.
引用
收藏
页码:878 / 888
页数:11
相关论文
共 49 条
[1]   THE 5'-REGION OF ARABIDOPSIS-THALIANA COR15A HAS CIS-ACTING ELEMENTS THAT CONFER COLD-REGULATED, DROUGHT-REGULATED AND ABA-REGULATED GENE-EXPRESSION [J].
BAKER, SS ;
WILHELM, KS ;
THOMASHOW, MF .
PLANT MOLECULAR BIOLOGY, 1994, 24 (05) :701-713
[2]   Generation and analysis of 9792 EST sequences from cold acclimated oat, Avena sativa [J].
Brautigam, Marcus ;
Lindlof, Angelica ;
Zakhrabekova, Shakhira ;
Gharti-Chhetri, Gokarna ;
Olsson, Bjorn ;
Olsson, Olof .
BMC PLANT BIOLOGY, 2005, 5 (1)
[3]   Barley Cbf3 gene identification, expression pattern, and map location [J].
Choi, DW ;
Rodriguez, EM ;
Close, TJ .
PLANT PHYSIOLOGY, 2002, 129 (04) :1781-1787
[4]   A gateway cloning vector set for high-throughput functional analysis of genes in planta [J].
Curtis, MD ;
Grossniklaus, U .
PLANT PHYSIOLOGY, 2003, 133 (02) :462-469
[5]   OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression [J].
Dubouzet, JG ;
Sakuma, Y ;
Ito, Y ;
Kasuga, M ;
Dubouzet, EG ;
Miura, S ;
Seki, M ;
Shinozaki, K ;
Yamaguchi-Shinozaki, K .
PLANT JOURNAL, 2003, 33 (04) :751-763
[6]  
Finkelstein RR, 1998, PLANT CELL, V10, P1043, DOI 10.1105/tpc.12.4.599
[7]   Regulation and characterization of four CBF transcription factors from Brassica napus [J].
Gao, MJ ;
Allard, G ;
Byass, L ;
Flanagan, AM ;
Singh, J .
PLANT MOLECULAR BIOLOGY, 2002, 49 (05) :459-471
[8]   Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation [J].
Gilmour, SJ ;
Sebolt, AM ;
Salazar, MP ;
Everard, JD ;
Thomashow, MF .
PLANT PHYSIOLOGY, 2000, 124 (04) :1854-1865
[9]   Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression [J].
Gilmour, SJ ;
Zarka, DG ;
Stockinger, EJ ;
Salazar, MP ;
Houghton, JM ;
Thomashow, MF .
PLANT JOURNAL, 1998, 16 (04) :433-442
[10]  
GUSTA LV, 1980, HORTSCIENCE, V15, P494