Electrocatalytic Activity and Stability of Nitrogen-Containing Carbon Nanotubes in the Oxygen Reduction Reaction

被引:511
作者
Kundu, Shankhamala [1 ]
Nagaiah, Tharamani Chikka
Xia, Wei [1 ]
Wang, Yuemin [1 ]
Van Dommele, Stefan [2 ]
Bitter, Johannes Hendrik [2 ]
Santa, Monika [3 ]
Grundmeier, Guido [3 ]
Bron, Michael [1 ]
Schuhmann, Wolfgang
Muhler, Martin [1 ]
机构
[1] Ruhr Univ Bochum, Lab Ind Chem, D-44780 Bochum, Germany
[2] Univ Utrecht, Utrecht, Netherlands
[3] Max Planck Inst Eisenforsch GmbH, D-40237 Dusseldorf, Germany
关键词
IRON PHENANTHROLINE COMPLEXES; ELECTROLYTE FUEL-CELLS; HEAT-TREATED IRON; REACTION CATALYSTS; RAMAN MICROPROBE; O-2; REDUCTION; AREA CARBON; SURFACE; BLACK; FILMS;
D O I
10.1021/jp811320d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nitrogen-containing carbon nanotubes (NCNTs) were prepared via pyrolysis of acetonitrile over cobalt catalysts at different temperatures to control the nitrogen content. The changes in the chemical and structural properties of undoped CNTs and NCNTs were investigated using high-resolution X-ray photoelectron and Raman spectroscopy. The NCNTs prepared at 550 degrees C had a higher amount of pyridinic groups and edge plane exposure than the ones prepared at 750 degrees C. The thermal stability and transformation of these nitrogen functional groups was studied using deconvoluted XP N 1s spectra. The NCNTs show a considerably higher activity in the oxygen reduction reaction in acidic electrolyte compared with undoped CNTs as demonstrated by cyclic voltammetry, rotating disk electrode measurements, and the redox-competition mode of scanning electrochemical microscopy (RC-SECM). Particularly, the NCNT sample prepared at 550 degrees C exhibited the highest activity, which was about 1 order of magnitude lower than that of a commercial Pt/C sample containing 20 wt % Pt. The oxygen reduction reaction (ORR) performance of this sample showed hardly any signs of deterioration after 3 days, as determined by voltammetric stability tests in H2SO4.
引用
收藏
页码:14302 / 14310
页数:9
相关论文
共 52 条
[1]   Dynamic surface rearrangement and thermal stability of nitrogen functional groups on carbon nanotubes [J].
Arrigo, Rosa ;
Haevecker, Michael ;
Schloegl, Robert ;
Su, Dang Sheng .
CHEMICAL COMMUNICATIONS, 2008, (40) :4891-4893
[2]   Effect of heat treatment on the redox properties of iron porphyrins adsorbed on high area carbon in acid electrolytes: An in situ Fe K-edge X-ray absorption near-edge structure study [J].
Bae, IT ;
Tryk, DA ;
Scherson, DA .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (21) :4114-4117
[3]   Spectroscopic determination of the structure of amorphous nitrogenated carbon films [J].
Bhattacharyya, S ;
Cardinaud, C ;
Turban, G .
JOURNAL OF APPLIED PHYSICS, 1998, 83 (08) :4491-4500
[4]   The selectivity of oxygen reduction by pyrolysed iron porphyrin supported on carbon [J].
Bouwkamp-Wijnoltz, AL ;
Visscher, W ;
van Veen, JAR .
ELECTROCHIMICA ACTA, 1998, 43 (21-22) :3141-3152
[5]   Thermogravimetry/Mass Spectrometry Investigations on the Formation of Oxygen Reduction Catalysts for PEM Fuel Cells on the Basis of Heat-Treated Iron Phenanthroline Complexes [J].
Bron, M. ;
Fiechter, S. ;
Bogdanoff, P. ;
Tributsch, H. .
FUEL CELLS, 2003, 2 (3-4) :137-142
[6]   Catalysts for oxygen reduction from heat-treated carbon-supported iron phenantroline complexes [J].
Bron, M ;
Fiechter, S ;
Hilgendorff, M ;
Bogdanoff, P .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2002, 32 (02) :211-216
[7]   EXAFS, XPS and electrochemical studies on oxygen reduction catalysts obtained by heat treatment of iron phenanthroline complexes supported on high surface area carbon black [J].
Bron, M ;
Radnik, J ;
Fieber-Erdmann, M ;
Bogdanoff, P ;
Fiechter, S .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2002, 535 (1-2) :113-119
[8]   Comparative performance of X-ray diffraction and Raman microprobe techniques for the study of carbon materials [J].
Cuesta, A ;
Dhamelincourt, P ;
Laureyns, J ;
Martínez-Alonso, A ;
Tascón, JMD .
JOURNAL OF MATERIALS CHEMISTRY, 1998, 8 (12) :2875-2879
[9]   RAMAN MICROPROBE STUDIES ON CARBON MATERIALS [J].
CUESTA, A ;
DHAMELINCOURT, P ;
LAUREYNS, J ;
MARTINEZALONSO, A ;
TASCON, JMD .
CARBON, 1994, 32 (08) :1523-1532
[10]  
Dodelet J.P., 2006, N4-Macrocyclic Metal Complexes, P83, DOI DOI 10.1007/978-0-387-28430-9_3