Crystallographic structure of the retinal and the protein after deprotonation of the Schiff base: The switch in the bacteriorhodopsin photocycle

被引:120
作者
Lanyi, JK [1 ]
Schobert, B [1 ]
机构
[1] Univ Calif Irvine, Dept Physiol & Biophys, Irvine, CA 92697 USA
关键词
bacteriorhodopsin; retinal; M intermediate; photoisomerization; membrane proteins;
D O I
10.1016/S0022-2836(02)00682-4
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We illuminated bacteriorhodopsin crystals at 210 K to produce, in a photo-stationary state with 60% occupancy, the earliest M intermediate (M,) of the photocycle. The crystal structure of this state was then determined from X-ray diffraction to 1.43 Angstrom resolution. When the refined model is placed after the recently determined structure for the K intermediate but before the reported structures for two later M states, a sequence of structural changes becomes evident in which movements of protein atoms and bound water are coordinated with relaxation of the initially strained photoisomerized 13-cis,15-anti retinal. In the K state only retinal atoms are displaced, but in M, water 402 moves also, nearly 1 Angstrom away from the unprotonated retinal Schiff base nitrogen. This breaks the hydrogen bond that bridges them, and initiates rearrangements of the hydrogen-bonded network of the extracellular region that develop more fully in the intermediates that follow. In the M-1 to M-2 transition, relaxation of the C-14-C-15 and Q,5 NZ torsion angles to near 180degrees reorients the retinylidene nitrogen atom from the extracellular to the cytoplasmic direction, water 402 becomes undetectable, and the side-chain of Arg82 is displaced strongly toward Glu194 and Glu204. Finally, in the M-2 to M-2' transition, correlated with release of a proton to the extracellular surface, the retinal assumes a virtually fully relaxed bent shape, and the 13-methyl group thrusts against the indole ring of Trp182 which tilts in the cytoplasmic direction. Comparison of the structures of M, and M2 reveals the principal switch in the photocycle: the change of the angle of the C-15=NZ-CE plane breaks the connection of the unprotonated Schiff base to the extracellular side and establishes its connection to the cytoplasmic side. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:727 / 737
页数:11
相关论文
共 61 条
[1]   BACTERIORHODOPSINS M412 INTERMEDIATE CONTAINS A 13-CIS, 14-S-TRANS, 15-ANTI-RETINAL SCHIFF-BASE CHROMOPHORE [J].
AMES, JB ;
FODOR, SPA ;
GEBHARD, R ;
RAAP, J ;
VANDENBERG, EMM ;
LUGTENBURG, J ;
MATHIES, RA .
BIOCHEMISTRY, 1989, 28 (09) :3681-3687
[2]   Titration of aspartate-85 in bacteriorhodopsin: What it says about chromophore isomerization and proton release [J].
Balashov, SP ;
Imasheva, ES ;
Govindjee, R ;
Ebrey, TG .
BIOPHYSICAL JOURNAL, 1996, 70 (01) :473-481
[3]  
Balashov SP, 2001, PHOTOCHEM PHOTOBIOL, V73, P453, DOI 10.1562/0031-8655(2001)073<0453:TASIOT>2.0.CO
[4]  
2
[5]   Protein, lipid and water organization in bacteriorhodopsin crystals:: a molecular view of the purple membrana at 1.9 Å resolution [J].
Belrhali, H ;
Nollert, P ;
Royant, A ;
Menzel, C ;
Rosenbusch, JP ;
Landau, EM ;
Pebay-Peyroula, E .
STRUCTURE, 1999, 7 (08) :909-917
[6]   ESTIMATED ACID DISSOCIATION-CONSTANTS OF THE SCHIFF-BASE, ASP-85, AND ARG-82 DURING THE BACTERIORHODOPSIN PHOTOCYCLE [J].
BROWN, LS ;
BONET, L ;
NEEDLEMAN, R ;
LANYI, JK .
BIOPHYSICAL JOURNAL, 1993, 65 (01) :124-130
[7]   Connectivity of the retinal Schiff base to Asp85 and Asp96 during the bacteriorhodopsin photocycle:: The local-access model [J].
Brown, LS ;
Dioumaev, AK ;
Needleman, R ;
Lanyi, JK .
BIOPHYSICAL JOURNAL, 1998, 75 (03) :1455-1465
[8]   Local-access model for proton transfer in bacteriorhodopsin [J].
Brown, LS ;
Dioumaev, AK ;
Needleman, R ;
Lanyi, JK .
BIOCHEMISTRY, 1998, 37 (11) :3982-3993
[9]   GLUTAMIC-ACID-204 IS THE TERMINAL PROTON RELEASE GROUP AT THE EXTRACELLULAR SURFACE OF BACTERIORHODOPSIN [J].
BROWN, LS ;
SASAKI, J ;
KANDORI, H ;
MAEDA, A ;
NEEDLEMAN, R ;
LANYI, JK .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (45) :27122-27126
[10]   STRUCTURAL-CHANGES IN BACTERIORHODOPSIN DURING PROTON TRANSLOCATION REVEALED BY NEUTRON-DIFFRACTION [J].
DENCHER, NA ;
DRESSELHAUS, D ;
ZACCAI, G ;
BULDT, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (20) :7876-7879