Quantized time correlation function approach to nonadiabatic decay rates in condensed phase: Application to solvated electrons in water and methanol

被引:32
作者
Borgis, Daniel
Rossky, Peter J.
Turi, Laszlo
机构
[1] Univ Evry Val Essonne, Dept Phys & Modelisat, F-91025 Evry, France
[2] Univ Texas, Inst Theoret Chem, Dept Chem & Biochem, Austin, TX 78712 USA
[3] Eotvos Lorand Univ, Dept Phys Chem, H-1518 Budapest, Hungary
基金
匈牙利科学研究基金会; 美国国家科学基金会;
关键词
D O I
10.1063/1.2221685
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A new, alternative form of the golden rule formula defining the nonadiabatic transition rate between two quantum states in condensed phase is presented. The formula involves the quantum time correlation function of the energy gap, of the nonadiabatic coupling, and their cross terms. Those quantities can be inferred from their classical counterparts, determined via molecular dynamics simulations. The formalism is applied to the problem of the nonadiabatic p -> s relaxation of an equilibrated p-electron in water and methanol. We find that, in both solvents, the relaxation is induced by the coupling to the vibrational modes and the quantum effects modify the rate by a factor of 2-10 depending on the quantization procedure applied. The resulting p-state lifetime for a hypothetical equilibrium excited state appears extremely short, in the sub-100 fs regime. Although this result is in contrast with all previous theoretical predictions, we also illustrate that the lifetimes computed here are very sensitive to the simulated electronic quantum gap and to the strongly correlated nonadiabatic coupling.
引用
收藏
页数:13
相关论文
共 77 条
[1]   ULTRAFAST TRANSIENT-ABSORPTION SPECTROSCOPY OF THE AQUEOUS SOLVATED ELECTRON [J].
ALFANO, JC ;
WALHOUT, PK ;
KIMURA, Y ;
BARBARA, PF .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5996-5998
[2]   Femtosecond solvation dynamics of solvated electrons in neat water [J].
Assel, M ;
Laenen, R ;
Laubereau, A .
CHEMICAL PHYSICS LETTERS, 2000, 317 (1-2) :13-22
[3]   Dynamics of excited solvated electrons in aqueous solution monitored with femtosecond-time and polarization resolution [J].
Assel, M ;
Laenen, R ;
Laubereau, A .
JOURNAL OF PHYSICAL CHEMISTRY A, 1998, 102 (13) :2256-2262
[4]   QUANTUM AND CLASSICAL RELAXATION RATES FROM CLASSICAL SIMULATIONS [J].
BADER, JS ;
BERNE, BJ .
JOURNAL OF CHEMICAL PHYSICS, 1994, 100 (11) :8359-8366
[5]   ROLE OF NUCLEAR TUNNELING IN AQUEOUS FERROUS FERRIC ELECTRON-TRANSFER [J].
BADER, JS ;
KUHARSKI, RA ;
CHANDLER, D .
JOURNAL OF CHEMICAL PHYSICS, 1990, 93 (01) :230-236
[6]   ELECTRON LOCALIZATION IN WATER CLUSTERS .1. ELECTRON-WATER PSEUDOPOTENTIAL [J].
BARNETT, RN ;
LANDMAN, U ;
CLEVELAND, CL ;
JORTNER, J .
JOURNAL OF CHEMICAL PHYSICS, 1988, 88 (07) :4421-4428
[7]   ELECTRON LOCALIZATION IN WATER CLUSTERS .2. SURFACE AND INTERNAL STATES [J].
BARNETT, RN ;
LANDMAN, U ;
CLEVELAND, CL ;
JORTNER, J .
JOURNAL OF CHEMICAL PHYSICS, 1988, 88 (07) :4429-4447
[8]   MOLECULAR-DYNAMICS AND SPECTRA .2. DIATOMIC RAMAN [J].
BERENS, PH ;
WHITE, SR ;
WILSON, KR .
JOURNAL OF CHEMICAL PHYSICS, 1981, 75 (02) :515-529
[9]  
Berne B. J., 1970, Advances in chemical physics vol. 18, P63, DOI 10.1002/9780470143636.ch3
[10]   Decoherent histories and nonadiabatic quantum molecular dynamics simulations [J].
Bittner, ER ;
Rossky, PJ .
JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (20) :8611-8618