Influence of polyethylene glycol chain length on the physicochemical and biological properties of poly(ethylene imine)-graft-poly(ethylene glycol) block copolymer/SiRNA polyplexes

被引:268
作者
Mao, Shirui
Neu, Michael
Germershaus, Oliver
Merkel, Olivia
Sitterberg, Johannes
Bakowsky, Udo
Kissel, Thomas
机构
[1] Univ Marburg, Dept Pharmaceut & Biopharm, D-35032 Marburg, Germany
[2] Shenyang Pharmaceut Univ, Sch Pharm, Shenyang, Peoples R China
关键词
D O I
10.1021/bc060129j
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Polyplexes between siRNA and poly(ethylene imine) (PEI) derivatives are promising nonviral carriers for siRNA. The polyplex stability is of critical importance for efficient siRNA delivery to the cytoplasm. Here, we investigate the effect of PEGylation at a constant ratio (similar to 50%) on the biophysical properties of the polyplexes. Particle size, zeta potential, and stability against heparin as well as RNase digestion and reporter gene knockdown under in vitro conditions of different siRNA polyplexes were characterized. Stability and size of siRNA polyplexes were clearly influenced by PEI-PEG structure, and high degrees of substitution such as PEI(25k)-g-PEG(550)(30) resulted in large (300-400 nm), diffuse complexes (AFM) which showed condensation behavior only at high N/P ratios. All other polyplexes and the PEI control showed similar sizes (150 nm) and compact structures in AFM, with complete condensation reached at N/P ratio of 3. Stability of siRNA polyplexes against heparin displacement and RNase digestion could be modified by PEGylation. Protection against RNase digestion was highest for PEI(25k)-gPEG(5k)(4) and PEI(25k)-g-PEG(20k)(1), while siRNA/PEI provided insufficient protection. In knockdown experiments using NIH/3T3 fibroblasts stably expressing, beta-galactosidase, it was shown that PEG chain length had a significant influence on biological activity of siRNA. Polyplexes with siRNA containing PEI(25k)-g-PEG(5k)(4) and PEI(25k)-g-PEG(20k)(1) yielded similar efficiencies of ca. 70% knockdown as lipofectamine controls. Confocal microscopy demonstrated enhanced cellular uptake of siRNA into cytosol by polyplexes formation with PEI copolymers. In conclusion, both the chain length and graft density of PEG were found to strongly influence siRNA condensation and stability and hence affect the knockdown efficiency of PEI-PEG/siRNA polyplexes.
引用
收藏
页码:1209 / 1218
页数:10
相关论文
共 41 条
[1]  
AIGNER A, 2006, J BIOTECHNOL 0110
[2]   Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis [J].
Akinc, A ;
Thomas, M ;
Klibanov, AM ;
Langer, R .
JOURNAL OF GENE MEDICINE, 2005, 7 (05) :657-663
[3]   C- versus N-terminally linked metittin-polyethylenimine conjugates: the site of linkage strongly influences activity of DNA potyplexes [J].
Boeckle, S ;
Wagner, E ;
Ogris, M .
JOURNAL OF GENE MEDICINE, 2005, 7 (10) :1335-1347
[4]   A VERSATILE VECTOR FOR GENE AND OLIGONUCLEOTIDE TRANSFER INTO CELLS IN CULTURE AND IN-VIVO - POLYETHYLENIMINE [J].
BOUSSIF, O ;
LEZOUALCH, F ;
ZANTA, MA ;
MERGNY, MD ;
SCHERMAN, D ;
DEMENEIX, B ;
BEHR, JP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (16) :7297-7301
[5]   Physicochemical and biological characterization of polyethylenimine-graft-poly(ethylene glycol) block copolymers as a delivery system for oligonucleotides and ribozymes [J].
Brus, C ;
Petersen, H ;
Aigner, A ;
Czubayko, F ;
Kissel, T .
BIOCONJUGATE CHEMISTRY, 2004, 15 (04) :677-684
[6]   Efficiency of polyethylenimines and polyethylenimine-graft-poly (ethylene glycol) block copolymers to protect oligonucleotides against enzymatic degradation [J].
Brus, C ;
Petersen, H ;
Aigner, A ;
Czubayko, F ;
Kissel, T .
EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, 2004, 57 (03) :427-430
[7]  
Erbacher P, 1999, J GENE MED, V1, P210
[8]   Physiochemical properties of low and high molecular weight poly(ethylene glycol)-grafted poly(ethylene imine) copolymers and their complexes with oligonucleotides [J].
Glodde, M ;
Sirsi, SR ;
Lutz, GJ .
BIOMACROMOLECULES, 2006, 7 (01) :347-356
[9]   Tracking the intracellular path of poly(ethylenimine)/DNA complexes for gene delivery [J].
Godbey, WT ;
Wu, KK ;
Mikos, AG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (09) :5177-5181
[10]   PROTEIN ADSORPTION TO POLY(ETHYLENE OXIDE) SURFACES [J].
GOMBOTZ, WR ;
GUANGHUI, W ;
HORBETT, TA ;
HOFFMAN, AS .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 1991, 25 (12) :1547-1562