TiO2 nanotubes manufactured by anodization of Ti thin films for on-chip Li-ion 2D microbatteries

被引:144
作者
Ortiz, Gregorio F. [1 ,2 ,3 ,4 ]
Hanzu, Ilie [1 ,2 ,3 ]
Knauth, Philippe [1 ,2 ,3 ]
Lavela, Pedro [4 ]
Tirado, Jose L. [4 ]
Djenizian, Thierry [1 ,2 ,3 ]
机构
[1] Univ Aix Marseille 1, CNRS, Lab Chim Prov,Ctr St Jerome, UMR 6264,Electrochem Mat Res Grp, F-13397 Marseille 20, France
[2] Univ Aix Marseille 2, CNRS, Lab Chim Prov,Ctr St Jerome, UMR 6264,Electrochem Mat Res Grp, F-13397 Marseille 20, France
[3] Univ Aix Marseille 3, CNRS, Lab Chim Prov,Ctr St Jerome, UMR 6264,Electrochem Mat Res Grp, F-13397 Marseille 20, France
[4] Univ Cordoba, Lab Quim Inorgan, E-14071 Cordoba, Spain
关键词
Anodization; Self-organization; Titania nanotubes; Li-ion microbatteries; Anode materials; ELECTRODE MATERIALS; ANODE MATERIALS; LITHIUM; PERFORMANCE; TITANIUM; BATTERY; MORPHOLOGY; ADDITIVES; CATHODES; FLUORIDE;
D O I
10.1016/j.electacta.2009.02.085
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The use of self-organized TiO2 nanotube arrays electrochemically grown onto Si is investigated for the fabrication of an alternative electrode dedicated to on-chip Li-ion 2D microbatteries. Discharge/charge curves and cycling performance are studied in lithium-anode electrochemical test cells for both amorphous and crystalline titania nanotubes. At 5 mu A cm(-2) amorphous TiO2 nanotube layers onto Si deliver a maximum areal capacity of 89 mu Ah cm(-2) in the first reversible discharge and 56 mu Ah cm(-2) over 50 cycles. We demonstrate that these nanostructured thin film electrodes showing such electrochemical performances are compatible with IC technology. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4262 / 4268
页数:7
相关论文
共 37 条
[1]   Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications [J].
Albu, Sergiu P. ;
Ghicov, Andrei ;
Macak, Jan M. ;
Hahn, Robert ;
Schmuki, Patrik .
NANO LETTERS, 2007, 7 (05) :1286-1289
[2]   Optimizing preparation conditions for 5 V electrode performance, and structural changes in Li1-xNi0.5Mn1.5O4 spinel [J].
Alcántara, R ;
Jaraba, M ;
Lavela, P ;
Tirado, JL .
ELECTROCHIMICA ACTA, 2002, 47 (11) :1829-1835
[3]   TiO2(B) nanowires as an improved anode material for lithium-ion batteries containing LiFePO4 or LiNi0.5Mn1.5O4 cathodes and a polymer electrolyte [J].
Armstrong, Graham ;
Armstrong, A. Robert ;
Bruce, Peter G. ;
Reale, Priscilla ;
Scrosati, Bruno .
ADVANCED MATERIALS, 2006, 18 (19) :2597-+
[4]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[5]   Possible redox shuttle additives for chemical overcharge and overdischarge protection for lithium-ion batteries [J].
Buhrmester, C ;
Moshurchak, L ;
Wang, RCL ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (02) :A288-A294
[6]   Electrochemical fabrication of Sn nanowires on titania nanotube guide layers [J].
Djenizian, Thierry ;
Hanzu, Ilie ;
Premchand, Yesudas D. ;
Vacandio, Florence ;
Knauth, Philippe .
NANOTECHNOLOGY, 2008, 19 (20)
[7]   A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications [J].
Du Pasquier, A ;
Plitz, I ;
Menocal, S ;
Amatucci, G .
JOURNAL OF POWER SOURCES, 2003, 115 (01) :171-178
[8]   Progress in three-dimensional (3D) Li-ion microbatteries [J].
Golodnitsky, D. ;
Nathan, M. ;
Yufit, V. ;
Strauss, E. ;
Freedman, K. ;
Burstein, L. ;
Gladkich, A. ;
Peled, E. .
SOLID STATE IONICS, 2006, 177 (26-32) :2811-2819
[9]   A nanosized silicon thin film as high capacity anode material for Li-ion rechargeable batteries [J].
Guo, Hong ;
Zhao, Hailei ;
Yin, Chaoli ;
Qiu, Weihua .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2006, 131 (1-3) :173-176
[10]   LI METAL-FREE RECHARGEABLE LIMN2O4/CARBON CELLS - THEIR UNDERSTANDING AND OPTIMIZATION [J].
GUYOMARD, D ;
TARASCON, JM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1992, 139 (04) :937-948