High temperature proton conducting organic-inorganic nanohybrids for polymer electrolyte membrane - Part II

被引:86
作者
Nakajima, H [1 ]
Nomura, S
Sugimoto, T
Nishikawa, S
Honma, I
机构
[1] Natl Inst Adv Ind Sci & Technol, Energy Elect Inst, Tsukuba, Ibaraki 3058568, Japan
[2] Sekisui Chem Co Ltd, Tsukuba Res Labs, Tsukuba, Ibaraki 3054292, Japan
关键词
D O I
10.1149/1.1485080
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Polymer electrolyte membrane fuel cells (PEMFCs) have been recently investigated extensively as a key technology to solve a global energy and environmental problem by their higher energy conversion efficiency compared to internal combustion engines. The electrolyte membrane is a basic element in PEMFC, however, the polymer electrolyte membrane, typically such as Nafion, usually suffers from degradation at higher temperature, resulting in narrow operational temperature windows below 100degreesC. If there is an alternative polymer membrane with high stability and sufficient protonic conductivity in the temperature range above 100degreesC, an intermediate temperature operated PEMFC can be realized which can potentially overcome major problems in the current system such as CO poisoning on the Pt surfaces: large amount of Pt metals at both electrodes and heat management. Additionally, direct methanol fuel cells (DMFCs) can be feasible at intermediate temperature operation. In this work, sol-gel processes have been used to synthesize a new family of polymer electrolyte membrane consisting of organic/inorganic nanohybrid macromolecules. The flexible, homogeneous, and large-sized hybrid polymer membrane has been found to be thermally stable up to 250degreesC and to have protonic conductivities of approximately 10(-3) to 10(-2) S/cm from a room temperature to 140degreesC under a humidified condition. The current membrane is potentially useful in an intermediate temperature-operated advanced fuel cells system. (C) 2002 The Electrochemical Society.
引用
收藏
页码:A953 / A959
页数:7
相关论文
共 42 条
[1]   Polymeric proton conducting membranes for medium temperature fuel cells (110-160°C) [J].
Alberti, G ;
Casciola, M ;
Massinelli, L ;
Bauer, B .
JOURNAL OF MEMBRANE SCIENCE, 2001, 185 (01) :73-81
[2]  
[Anonymous], 1993, POLYM ADVAN TECHNOL
[3]   Investigation of a direct methanol fuel cell based on a composite Nafion®-silica electrolyte for high temperature operation [J].
Antonucci, PL ;
Aricò, AS ;
Cretì, P ;
Ramunni, E ;
Antonucci, V .
SOLID STATE IONICS, 1999, 125 (1-4) :431-437
[4]  
Bae JM, 1999, J KOREAN PHYS SOC, V35, pS315
[5]   New preparation methods for organic-inorganic polymer hybrids [J].
Chujo, Y ;
Tamaki, R .
MRS BULLETIN, 2001, 26 (05) :389-392
[6]   Inorganic-organic proton conductors based on alkylsulfone functionalities and their patterning by photoinduced methods [J].
Depre, L ;
Kappel, J ;
Popall, M .
ELECTROCHIMICA ACTA, 1998, 43 (10-11) :1301-1306
[7]   NMR, CONDUCTIVITY AND NEUTRON-SCATTERING INVESTIGATION OF IONIC DYNAMICS IN THE ANHYDROUS POLYMER PROTONIC CONDUCTOR PEO(H3PO4)X [J].
DONOSO, P ;
GORECKI, W ;
BERTHIER, C ;
DEFENDINI, F ;
POINSIGNON, C ;
ARMAND, MB .
SOLID STATE IONICS, 1988, 28 :969-974
[8]   High-temperature proton conducting membranes based on perfluorinated ionomer membrane-ionic liquid composites [J].
Doyle, M ;
Choi, SK ;
Proulx, G .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (01) :34-37
[9]  
England W. A., 1980, Solid State Ionics, V1, P231, DOI 10.1016/0167-2738(80)90007-7
[10]   High pressure electrical conductivity studies of acid doped polybenzimidazole [J].
Fontanella, JJ ;
Wintersgill, MC ;
Wainright, JS ;
Savinell, RF ;
Litt, M .
ELECTROCHIMICA ACTA, 1998, 43 (10-11) :1289-1294