ERG6 and PDR5 regulate small lipophilic drug accumulation in yeast cells via distinct mechanisms

被引:74
作者
Emter, R [1 ]
Heese-Peck, A [1 ]
Kralli, A [1 ]
机构
[1] Univ Basel, Biozentrum, Div Biochem, CH-4056 Basel, Switzerland
关键词
drug resistance; ATP-binding cassette transporter; sterol; small lipophilic molecule transport; yeast;
D O I
10.1016/S0014-5793(02)02818-1
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Diagnosis and circumvention of multi-drug resistance requires an understanding of the underlying cellular mechanisms. In the model organism Saccharomyces cerevisiae, deletions of PDR5 or ERG6 increase sensitivity to many small lipophilic drugs. Pdr5p is a plasma membrane ATP-binding cassette transporter that actively exports drugs, thereby lowering their intracellular levels. The mechanism by which ERG6, an enzyme in sterol biosynthesis, affects drug accumulation is less clear. We show here that ERG6 limits the rate of passive drug diffusion across the membrane, without affecting Pdr5p-mediated drug export. Consistent with their action by distinct mechanisms, PDR5 and ERG6 effects on drug accumulation are additive. (C) 2002 Published by Elsevier Science B.V. on behalf of the Federation of European Biochemical Societies.
引用
收藏
页码:57 / 61
页数:5
相关论文
共 33 条
[1]   ALTERED PLASMA-MEMBRANE ULTRASTRUCTURE IN MULTIDRUG-RESISTANT CELLS [J].
ARSENAULT, AL ;
LING, V ;
KARTNER, N .
BIOCHIMICA ET BIOPHYSICA ACTA, 1988, 938 (02) :315-321
[2]   YEAST MULTIDRUG-RESISTANCE - THE PDR NETWORK [J].
BALZI, E ;
GOFFEAU, A .
JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 1995, 27 (01) :71-76
[3]   DIFFERENCES IN CRYSTAL VIOLET UPTAKE AND CATION-INDUCED DEATH AMONG YEAST STEROL MUTANTS [J].
BARD, M ;
LEES, ND ;
BURROWS, LS ;
KLEINHANS, FW .
JOURNAL OF BACTERIOLOGY, 1978, 135 (03) :1146-1148
[4]   Inventory and function of yeast ABC proteins: about sex, stress, pleiotropic drug and heavy metal resistance [J].
Bauer, BE ;
Wolfger, H ;
Kuchler, K .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 1999, 1461 (02) :217-236
[5]   The multidrug resistance protein family [J].
Borst, P ;
Evers, R ;
Kool, M ;
Wijnholds, J .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 1999, 1461 (02) :347-357
[6]  
EGNER R, 1995, MOL CELL BIOL, V15, P5879
[7]   Genetic separation of FK506 susceptibility and drug transport in the yeast Pdr5 ATP-binding cassette multidrug resistance transporter [J].
Egner, R ;
Rosenthal, FE ;
Kralli, A ;
Sanglard, D ;
Kuchler, K .
MOLECULAR BIOLOGY OF THE CELL, 1998, 9 (02) :523-543
[8]   Analysis of the tangled relationships between P-glycoprotein-mediated multidrug resistance and the lipid phase of the cell membrane [J].
Ferté, J .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2000, 267 (02) :277-294
[9]  
Fleckenstein A, 1999, YEAST, V15, P133
[10]   THE YEAST GENE ERG6 IS REQUIRED FOR NORMAL MEMBRANE-FUNCTION BUT IS NOT ESSENTIAL FOR BIOSYNTHESIS OF THE CELL-CYCLE-SPARKING STEROL [J].
GABER, RF ;
COPPLE, DM ;
KENNEDY, BK ;
VIDAL, M ;
BARD, M .
MOLECULAR AND CELLULAR BIOLOGY, 1989, 9 (08) :3447-3456