Spatial independent component analysis of functional MRI time-series: To what extent do results depend on the algorithm used?

被引:103
作者
Esposito, F
Formisano, E
Seifritz, E
Goebel, R
Morrone, R
Tedeschi, G
Di Salle, F
机构
[1] Univ Naples Federico II, Nuovo Policlin 2, Div Neuroradiol, Dept Neurol Sci, I-80127 Naples, Italy
[2] Univ Naples 2, Inst Neurol Sci, Naples, Italy
[3] Maastricht Univ, Dept Cognit Neurosci, Maastricht, Netherlands
[4] Univ Basel, Dept Psychiat, CH-4003 Basel, Switzerland
[5] Morrone Diagnost Ctr, Caserta, Italy
关键词
functional magnetic resonance imaging; exploratory data-driven analysis; independent component analysis; Fixed-Point algorithm; adaptive algorithm; information maximization; receiver operating characteristics; Infomax algorithm;
D O I
10.1002/hbm.10034
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Independent component analysis (ICA) has been successfully employed to decompose functional MRI (fMRI) time-series into sets of activation maps and associated time-courses. Several ICA algorithms have been proposed in the neural network literature. Applied to fMRI, these algorithms might lead to different spatial or temporal readouts of brain activation. We compared the two ICA algorithms that have been used so far for spatial ICA (sICA) of fMRI time-series: the Infomax (Bell and Sejnowski [1995]: Neural Comput 7:1004-1034) and the Fixed-Point (Hyvarinen [1999]: Adv Neural Inf Proc Syst 10:273-279) algorithms. We evaluated the Infomax- and Fixed Point-based sICA decompositions of simulated motor, and real motor and visual activation fMRI time-series using an ensemble of measures. Log-likelihood (McKeown et al. [1998]: Hum Brain Mapp 6:160-188) was used as a measure of how significantly the estimated independent sources fit the statistical structure of the data; receiver operating characteristics (ROC) and linear correlation analyses were used to evaluate the algorithms' accuracy of estimating the spatial layout and the temporal dynamics of simulated and real activations; cluster sizing calculations and an estimation of a residual gaussian noise term within the components were used to examine the anatomic structure of ICA components and for the assessment of noise reduction capabilities. Whereas both algorithms produced highly accurate results, the Fixed-Point outperformed the Infomax in terms of spatial and temporal accuracy as long as inferential statistics were employed as benchmarks. Conversely, the Infomax sICA was superior in terms of global estimation of the ICA model and noise reduction capabilities. Because of its adaptive nature, the Infomax approach appears to be better suited to investigate activation phenomena that are not predictable or adequately modelled by inferential techniques. (C) 2002 Wiley-Liss, Inc.
引用
收藏
页码:146 / 157
页数:12
相关论文
共 30 条
[1]  
Amari S, 1996, ADV NEUR IN, V8, P757
[2]   Combining independent component analysis and correlation analysis to probe interregional connectivity in fMRI task activation datasets [J].
Arfanakis, K ;
Cordes, D ;
Haughton, VM ;
Moritz, CH ;
Quigley, MA ;
Meyerand, ME .
MAGNETIC RESONANCE IMAGING, 2000, 18 (08) :921-930
[3]   TIME COURSE EPI OF HUMAN BRAIN-FUNCTION DURING TASK ACTIVATION [J].
BANDETTINI, PA ;
WONG, EC ;
HINKS, RS ;
TIKOFSKY, RS ;
HYDE, JS .
MAGNETIC RESONANCE IN MEDICINE, 1992, 25 (02) :390-397
[4]   PROCESSING STRATEGIES FOR TIME-COURSE DATA SETS IN FUNCTIONAL MRI OF THE HUMAN BRAIN [J].
BANDETTINI, PA ;
JESMANOWICZ, A ;
WONG, EC ;
HYDE, JS .
MAGNETIC RESONANCE IN MEDICINE, 1993, 30 (02) :161-173
[5]   Comparison of two exploratory data analysis methods for fMRI: fuzzy clustering vs. principal component analysis [J].
Baumgartner, R ;
Ryner, L ;
Richter, W ;
Summers, R ;
Jarmasz, M ;
Somorjai, R .
MAGNETIC RESONANCE IMAGING, 2000, 18 (01) :89-94
[6]  
Beckmann CF, 2001, NEUROIMAGE, V13, pS75
[7]   AN INFORMATION MAXIMIZATION APPROACH TO BLIND SEPARATION AND BLIND DECONVOLUTION [J].
BELL, AJ ;
SEJNOWSKI, TJ .
NEURAL COMPUTATION, 1995, 7 (06) :1129-1159
[8]   Blind source separation of multiple signal sources of fMRI data sets using independent component analysis [J].
Biswal, BB ;
Ulmer, JL .
JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 1999, 23 (02) :265-271
[9]   Independent component analysis at the neural cocktail party [J].
Brown, GD ;
Yamada, S ;
Sejnowski, TJ .
TRENDS IN NEUROSCIENCES, 2001, 24 (01) :54-63
[10]   Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms [J].
Calhoun, VD ;
Adali, T ;
Pearlson, GD ;
Pekar, JJ .
HUMAN BRAIN MAPPING, 2001, 13 (01) :43-53