Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity

被引:722
作者
Baret, Jean-Christophe [1 ]
Miller, Oliver J. [1 ]
Taly, Valerie [1 ]
Ryckelynck, Michael [1 ]
El-Harrak, Abdeslam [1 ]
Frenz, Lucas [1 ]
Rick, Christian [1 ]
Samuels, Michael L. [2 ]
Hutchison, J. Brian [2 ]
Agresti, Jeremy J. [3 ,4 ]
Link, Darren R. [2 ]
Weitz, David A. [3 ,4 ]
Griffiths, Andrew D. [1 ]
机构
[1] Univ Strasbourg, ISIS, CNRS, UMR 7006, F-67083 Strasbourg, France
[2] RainDance Technol Inc, Lexington, MA 02421 USA
[3] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[4] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
基金
美国国家科学基金会; 英国医学研究理事会;
关键词
SINGLE-CELLS; BETA-GALACTOSIDASE; ENCAPSULATION; DEVICES; POLY(DIMETHYLSILOXANE); COMPARTMENTS; EXPRESSION; EMULSIONS; EVOLUTION; LIBRARIES;
D O I
10.1039/b902504a
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We describe a highly efficient microfluidic fluorescence-activated droplet sorter (FADS) combining many of the advantages of microtitre-plate screening and traditional fluorescence-activated cell sorting (FACS). Single cells are compartmentalized in emulsion droplets, which can be sorted using dielectrophoresis in a fluorescence-activated manner (as in FACS) at rates up to 2000 droplets s(-1). To validate the system, mixtures of E. coli cells, expressing either the reporter enzyme beta-galactosidase or an inactive variant, were compartmentalized with a fluorogenic substrate and sorted at rates of similar to 300 droplets s(-1). The false positive error rate of the sorter at this throughput was < 1 in 10(4) droplets. Analysis of the sorted cells revealed that the primary limit to enrichment was the co-encapsulation of E. coli cells, not sorting errors: a theoretical model based on the Poisson distribution accurately predicted the observed enrichment values using the starting cell density (cells per droplet) and the ratio of active to inactive cells. When the cells were encapsulated at low density (similar to 1 cell for every 50 droplets), sorting was very efficient and all of the recovered cells were the active strain. In addition, single active droplets were sorted and cells were successfully recovered.
引用
收藏
页码:1850 / 1858
页数:9
相关论文
共 32 条
[1]   High-throughput screening of enzyme libraries: Thiolactonases evolved by fluorescence-activated sorting of single cells in emulsion compartments [J].
Aharoni, A ;
Amitai, G ;
Bernath, K ;
Magdassi, S ;
Tawfik, DS .
CHEMISTRY & BIOLOGY, 2005, 12 (12) :1281-1289
[2]   Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices [J].
Ahn, K ;
Kerbage, C ;
Hunt, TP ;
Westervelt, RM ;
Link, DR ;
Weitz, DA .
APPLIED PHYSICS LETTERS, 2006, 88 (02) :1-3
[3]   Electrocoalescence of drops synchronized by size-dependent flow in microfluidic channels [J].
Ahn, Keunho ;
Agresti, Jeremy ;
Chong, Henry ;
Marquez, Manuel ;
Weitz, D. A. .
APPLIED PHYSICS LETTERS, 2006, 88 (26)
[4]   Formation of dispersions using "flow focusing" in microchannels [J].
Anna, SL ;
Bontoux, N ;
Stone, HA .
APPLIED PHYSICS LETTERS, 2003, 82 (03) :364-366
[5]   Commercial high speed machines open new opportunities in high throughput flow cytometry (HTFC) [J].
Ashcroft, RG ;
Lopez, PA .
JOURNAL OF IMMUNOLOGICAL METHODS, 2000, 243 (1-2) :13-24
[6]   Thermocapillary valve for droplet production and sorting [J].
Baroud, Charles N. ;
Delville, Jean-Pierre ;
Gallaire, Francois ;
Wunenburger, Regis .
PHYSICAL REVIEW E, 2007, 75 (04)
[7]   Microfluidic high-throughput encapsulation and hydrodynamic self-sorting of single cells [J].
Chabert, Max ;
Viovy, Jean-Louis .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (09) :3191-3196
[8]   Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms [J].
Clausell-Tormos, Jenifer ;
Lieber, Diana ;
Baret, Jean-Christophe ;
El-Harrak, Abdeslam ;
Miller, Oliver J. ;
Frenz, Lucas ;
Blouwolff, Joshua ;
Humphry, Katherine J. ;
Koster, Sarah ;
Duan, Honey ;
Holtze, Christian ;
Weitz, David A. ;
Griffiths, Andrew D. ;
Merten, Christoph A. .
CHEMISTRY & BIOLOGY, 2008, 15 (05) :427-437
[9]   An integrated device for monitoring time-dependent in vitro expression from single genes in picolitre droplets [J].
Courtois, Fabienne ;
Olguin, Luis F. ;
Whyte, Graeme ;
Bratton, Daniel ;
Huck, Wilhelm T. S. ;
Abell, Chris ;
Hollfelder, Florian .
CHEMBIOCHEM, 2008, 9 (03) :439-446
[10]   Rapid prototyping of microfluidic systems in poly(dimethylsiloxane) [J].
Duffy, DC ;
McDonald, JC ;
Schueller, OJA ;
Whitesides, GM .
ANALYTICAL CHEMISTRY, 1998, 70 (23) :4974-4984