Schmidt number for density matrices

被引:298
作者
Terhal, BM
Horodecki, P
机构
[1] IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
[2] Gdansk Univ Technol, Fac Appl Phys & Math, PL-80952 Gdansk, Poland
[3] Leibniz Univ Hannover, Inst Theoret Phys, D-30167 Hannover, Germany
来源
PHYSICAL REVIEW A | 2000年 / 61卷 / 04期
关键词
D O I
10.1103/PhysRevA.61.040301
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We introduce the notion of a Schmidt number of a bipartite density matrix. We show that k-positive maps witness the Schmidt number, in the same way that positive maps witness entanglement. We determine the Schmidt number of the family of states that is made from mixing the completely mixed state and a maximally entangled state. We show that the Schmidt number does not necessarily increase when taking tensor copies of a density matrix rho; we give an example of a density matrix for which the Schmidt numbers of rho and rho x rho are both 2.
引用
收藏
页数:4
相关论文
共 21 条
[1]  
[Anonymous], 1993, Quantum Theory: Concepts and Methods, Fundamental Theories of Physics
[2]   Unextendible product bases and bound entanglement [J].
Bennett, CH ;
DiVincenzo, DP ;
Mor, T ;
Shor, PW ;
Smolin, JA ;
Terhal, BM .
PHYSICAL REVIEW LETTERS, 1999, 82 (26) :5385-5388
[3]  
BENNETT CH, QUANTPH9808030
[4]  
BRUSS D, QUANTPH9911056
[5]  
DIVINCENZO D, QUANTPH9908070
[6]  
DIVINCENZO DP, QUANTPH9910026
[7]  
DIVINCENZO DP, UNPUB
[8]  
DUER W, QUANTPH9910022
[9]   Mixed-state entanglement and distillation: Is there a "bound" entanglement in nature? [J].
Horodecki, M ;
Horodecki, P ;
Horodecki, R .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5239-5242
[10]   Separability of mixed states: Necessary and sufficient conditions [J].
Horodecki, M ;
Horodecki, P ;
Horodecki, R .
PHYSICS LETTERS A, 1996, 223 (1-2) :1-8