Target recognition of apocalmodulin by nitric oxide synthase I peptides

被引:15
作者
Censarek, P
Beyermann, M
Koch, KW [1 ]
机构
[1] Forschungszentrum Julich, Inst Biol Informat Verarbeitung, D-52425 Julich, Germany
[2] Foschungsinst Mol Pharmakol, D-13125 Berlin, Germany
关键词
D O I
10.1021/bi025681k
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
An increasing number of proteins are found that are regulated by the Ca2+-free state of calmodulin, apocalmodulin. Many of these targets harbor a so-called IQ motif within their primary sequence, but several target proteins of apocalmodulin lack this motif. We investigated whether the Ca2+-dependent calmodulin-binding site of nitric oxide synthase I could be transformed into a target site of apocalmodulin. Synthetic peptides representing the,wild-type amino acid sequence and several peptides carrying mutations were studied by isothermal titration calorimetry and fluorescence spectroscopy. A single amino acid substitution of a negative charge to a positive charge can convert a classical Ca2+-dependent binding site of calmodulin into a target site for apocalmodulin. In addition, the introduction of hydrophobic amino acids increases the apparent binding affinity from the micromolar to the nanomolar range. Binding of wild-type and mutant peptides to Ca2+-calmodulin was enthalpically driven, and binding to apocalmodulin was entropically driven. Our data indicate that only a few selected amino acid positions in a calmodulin-binding site determine its Ca2+ dependency.
引用
收藏
页码:8598 / 8604
页数:7
相关论文
共 45 条
[1]   THE CALMODULIN-BINDING DOMAIN OF THE INDUCIBLE (MACROPHAGE) NITRIC-OXIDE SYNTHASE [J].
ANAGLI, J ;
HOFMANN, F ;
QUADRONI, M ;
VORHERR, T ;
CARAFOLI, E .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1995, 233 (03) :701-708
[2]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[3]   Energetics of target peptide binding by calmodulin reveals different modes of binding [J].
Brokx, RD ;
Lopez, MM ;
Vogel, HJ ;
Makhatadze, GI .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (17) :14083-14091
[4]   Endothelial nitric-oxide synthase (type III) is activated and becomes calcium independent upon phosphorylation by cyclic nucleotide-dependent protein kinases [J].
Butt, E ;
Bernhardt, M ;
Smolenski, A ;
Kotsonis, P ;
Fröhlich, LG ;
Sickmann, A ;
Meyer, HE ;
Lohmann, SM ;
Schmidt, HHHW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (07) :5179-5187
[5]   CALMODULIN IS A SUBUNIT OF NITRIC-OXIDE SYNTHASE FROM MACROPHAGES [J].
CHO, HJ ;
XIE, QW ;
CALAYCAY, J ;
MUMFORD, RA ;
SWIDEREK, KM ;
LEE, TD ;
NATHAN, C .
JOURNAL OF EXPERIMENTAL MEDICINE, 1992, 176 (02) :599-604
[6]   MOLECULAR AND STRUCTURAL BASIS OF TARGET RECOGNITION BY CALMODULIN [J].
CRIVICI, A ;
IKURA, M .
ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 1995, 24 :85-116
[7]   The 42-amino acid insert in the FMN domain of neuronal nitric-oxide synthase exerts control over Ca2+/calmodulin-dependent electron transfer [J].
Daff, S ;
Sagami, I ;
Shimizu, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (43) :30589-30595
[8]   Characterization of binding interactions by isothermal titration calorimetry [J].
Doyle, ML .
CURRENT OPINION IN BIOTECHNOLOGY, 1997, 8 (01) :31-35
[9]   TISSUE SULFHYDRYL GROUPS [J].
ELLMAN, GL .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1959, 82 (01) :70-77
[10]   CALCIUM-INDUCED STRUCTURAL-CHANGES AND DOMAIN AUTONOMY IN CALMODULIN [J].
FINN, BE ;
EVENAS, J ;
DRAKENBERG, T ;
WALTHO, JP ;
THULIN, E ;
FORSEN, S .
NATURE STRUCTURAL BIOLOGY, 1995, 2 (09) :777-783