Fabrication of nanowire-like cuprous oxide in aqueous solutions of a triblock copolymer

被引:17
作者
Chang, Xiaofeng [1 ]
Ji, Guangbin [1 ,2 ,3 ]
Shen, Kai [1 ]
Pan, Lijia [2 ,3 ]
Shi, Yi [2 ,3 ]
Zheng, Youdou [2 ,3 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Nanomat Res Inst, Coll Mat Sci & Technol, Nanjing 210016, Peoples R China
[2] Nanjing Univ, Dept Phys, Nanjing 210093, Peoples R China
[3] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Chemical synthesis; Oxides; Nanostructures; Optical properties; FACILE SYNTHESIS; HOLLOW SPHERES; CU2O; CUO; NANOCRYSTALS; MORPHOLOGY; ROUTE; NANOARCHITECTURES; PHOTOCATALYSIS; NANOSTRUCTURES;
D O I
10.1016/j.jallcom.2009.03.169
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Cu2O nanowires were successfully fabricated by a simple liquid reaction in the presence of amphiphilic triblock copolymer (P123). The concentration of copolymer and aging time drastically changed the morphology of Cu2O samples. XPS results show that tiny amount of CuO as well as some absorbed O-2 molecules existed on the surface of the Cu2O nanowires. Thermal analysis shows that the triblock copolymer owns a higher decomposition temperature (similar to 645 degrees C) than that of pervious research results and this may be the result of strong interaction between P123 and Cu2O. The band gap of Cu2O nanowires was estimated about 2.23 eV and shifting of the band gap with decreasing of the particle size could also be found. The photoluminance property study reveals that the intrinsic emission peak Of Cu2O nanowires can be observed at 546 nm under the excitation wavelength of 400 nm (Xe lamp was used as the excitation light source). (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:240 / 245
页数:6
相关论文
共 40 条
[1]   Thin film deposition of Cu2O and application for solar cells [J].
Akimoto, K. ;
Ishizuka, S. ;
Yanagita, M. ;
Nawa, Y. ;
Paul, Goutam K. ;
Sakurai, T. .
SOLAR ENERGY, 2006, 80 (06) :715-722
[2]   Visible-light photocatalysis in nitrogen-doped titanium oxides [J].
Asahi, R ;
Morikawa, T ;
Ohwaki, T ;
Aoki, K ;
Taga, Y .
SCIENCE, 2001, 293 (5528) :269-271
[3]   Photocatalytic activity of CU2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions [J].
Bessekhouad, Y ;
Robert, D ;
Weber, JV .
CATALYSIS TODAY, 2005, 101 (3-4) :315-321
[4]   Synthesis and properties of Cu2O quantum particles [J].
Borgohain, K ;
Murase, N ;
Mahamuni, S .
JOURNAL OF APPLIED PHYSICS, 2002, 92 (03) :1292-1297
[5]   A novel route to US nanocrystals with strong electrogenerated chemiluminescence [J].
Chen, Ming ;
Pan, Lijia ;
Huang, Zhuangqun ;
Cao, Jieming ;
Zheng, Youdou ;
Zhan, Haiqian .
MATERIALS CHEMISTRY AND PHYSICS, 2007, 101 (2-3) :317-321
[6]   Solvothermal fabrication of monodisperse zinc-blende CdS nanocrystals [J].
Chen, Ming ;
Pan, Lijia ;
Cao, Jieming ;
Zheng, Mingbo .
CHEMISTRY LETTERS, 2006, 35 (12) :1388-1389
[7]   Novel method to enlarge the surface area of SBA-15 [J].
Colilla, Montserrat ;
Balas, Francisco ;
Manzano, Miguel ;
Vallet-Regi, Maria .
CHEMISTRY OF MATERIALS, 2007, 19 (13) :3099-+
[8]  
Fujishima A., 2000, J. Photochem. Photobiol. C: Photochem. Rev., V1, P1, DOI [10.1016/S1389-5567(00)00002-2, DOI 10.1016/S1389-5567(00)00002-2]
[9]   Solution-phase synthesis of Cu2O nanocubes [J].
Gou, LF ;
Murphy, CJ .
NANO LETTERS, 2003, 3 (02) :231-234
[10]   ENVIRONMENTAL APPLICATIONS OF SEMICONDUCTOR PHOTOCATALYSIS [J].
HOFFMANN, MR ;
MARTIN, ST ;
CHOI, WY ;
BAHNEMANN, DW .
CHEMICAL REVIEWS, 1995, 95 (01) :69-96