Molecular mechanisms of ligand binding, signaling, and regulation within the superfamily of G-protein-coupled receptors: molecular modeling and mutagenesis approaches to receptor structure and function

被引:451
作者
Kristiansen, K [1 ]
机构
[1] Univ Tromso, Inst Med Biol, Dept Pharmacol, N-9037 Tromso, Norway
关键词
site-directed mutagenesis; molecular modeling; G-protein-coupled receptors; signaling; pharmaceuticals; scaffolding;
D O I
10.1016/j.pharmthera.2004.05.002
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The superfamily of G-protein-coupled receptors (GPCRs) could be subclassified into 7 families (A, B, large N-terminal family B-7 transmembrane helix, C, Frizzled/Smoothened, taste 2, and vomeronasal I receptors) among mammalian species. Cloning and functional studies of GPCRs have revealed that the superfamily of GPCRs comprises receptors for chemically diverse native ligands including (1) endogenous compounds like amines, peptides, and Writ proteins (i.e., secreted proteins activating Frizzled receptors); (2) endogenous cell surface adhesion molecules; and (3) photons and exogenous compounds like odorants. The combined use of site-directed mutagenesis and molecular modeling approaches have provided detailed insight into molecular mechanisms of ligand binding, receptor folding, receptor activation, G-protein coupling, and regulation of GPCRs. The vast majority of family A, B, C, vomeronasal 1, and taste 2 receptors are able to transduce signals into cells through G-protein coupling. However, G-protein-independent signaling mechanisms have also been reported for many GPCRs. Specific interaction motifs in the intracellular parts of these receptors allow them to interact with scaffold proteins. Protein engineering techniques have provided information on molecular mechanisms of GPCR-accessory protein, GPCR-GPCR, and GPCR-scaffold protein interactions. Site-directed mutagenesis and molecular dynamics simulations have revealed that the inactive state conformations are stabilized by specific interhelical and intrahelical salt bridge interactions and hydrophobic-type interactions. Constitutively activating mutations or agonist binding disrupts such constraining interactions leading to receptor conformations that associates with and activate G-proteins. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:21 / 80
页数:60
相关论文
共 395 条
[1]   Cleavage of Ig-Hepta at a "SEA" module and at a conserved G protein-coupled receptor proteolytic site [J].
Abe, J ;
Fukuzawa, T ;
Hirose, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (26) :23391-23398
[2]   Evidence for the direct involvement of transmembrane region 6 of the lutropin/choriogonadotropin receptor in activating G(S) [J].
Abell, AN ;
Segaloff, DL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (23) :14586-14591
[3]  
AKIYOSHI J, 1995, J NEUROCHEM, V64, P2473
[4]   Dependence on the motif YIPP for the physical association of Jak2 kinase with the intracellular carboxyl tail of the angiotensin II AT(1) receptor [J].
Ali, MS ;
Sayeski, PP ;
Dirksen, LB ;
Hayzer, DJ ;
Marrero, MB ;
Bernstein, KE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (37) :23382-23388
[5]   Mapping the binding site pocket of the serotonin 5-hydroxytryptamine(2A) receptor - Ser(3.36(159)) provides a second interaction site for the protonated amine of serotonin but not of lysergic acid diethylamide or bufotenin [J].
Almaula, N ;
Ebersole, BJ ;
Zhang, DQ ;
Weinstein, H ;
Sealfon, SC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (25) :14672-14675
[6]  
Almaula N, 1996, MOL PHARMACOL, V50, P34
[7]   Structural features and light-dependent changes in the cytoplasmic interhelical E-F loop region of rhodopsin: A site-directed spin-labeling study [J].
Altenbach, C ;
Yang, K ;
Farrens, DL ;
Farahbakhsh, ZT ;
Khorana, HG ;
Hubbell, WL .
BIOCHEMISTRY, 1996, 35 (38) :12470-12478
[8]   Structure and function in rhodopsin: Mapping light-dependent changes in distance between residue 316 in helix 8 and residues in the sequence 60-75, covering the cytoplasmic end of helices TM1 and TM2 and their connection loop CL1 [J].
Altenbach, C ;
Klein-Seetharaman, J ;
Cai, KW ;
Khorana, HG ;
Hubbell, WL .
BIOCHEMISTRY, 2001, 40 (51) :15493-15500
[9]   Structure and function in rhodopsin: Mapping light-dependent changes in distance between residue 65 in helix TM1 and residues in the sequence 306-319 at the cytoplasmic end of helix TM7 and in helix H8 [J].
Altenbach, C ;
Cai, KW ;
Klein-Seetharaman, J ;
Khorana, FG ;
Hubbell, WL .
BIOCHEMISTRY, 2001, 40 (51) :15483-15492
[10]   Dimerization: An emerging concept for G protein-coupled receptor ontogeny and function [J].
Angers, S ;
Salahpour, A ;
Bouvier, M .
ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, 2002, 42 :409-435