Advances for studying clonal evolution in cancer

被引:53
作者
Ding, Li [1 ,2 ,3 ,4 ]
Raphael, Benjamin J. [5 ,6 ]
Chen, Feng [7 ,8 ]
Wendl, Michael C. [2 ,4 ,9 ]
机构
[1] Washington Univ, Sch Med, Dept Med, Div Oncol, St Louis, MO 63110 USA
[2] Washington Univ, Sch Med, Genome Inst, St Louis, MO 63108 USA
[3] Washington Univ, Sch Med, Siteman Canc Ctr, St Louis, MO 63110 USA
[4] Washington Univ, Sch Med, Dept Genet, St Louis, MO 63108 USA
[5] Brown Univ, Ctr Computat Mol Biol, Providence, RI 02912 USA
[6] Brown Univ, Dept Comp Sci, Providence, RI 02912 USA
[7] Washington Univ, Sch Med, Div Renal, Dept Med, St Louis, MO 63110 USA
[8] Washington Univ, Sch Med, Dept Cell Biol & Physiol, St Louis, MO 63110 USA
[9] Washington Univ, Dept Math, St Louis, MO 63130 USA
基金
美国国家科学基金会;
关键词
Clonal evolution; Tumor heterogeneity; Cancer;
D O I
10.1016/j.canlet.2012.12.028
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The "clonal evolution" model of cancer emerged and "evolved" amid ongoing advances in technology, especially in recent years during which next generation sequencing instruments have provided ever higher resolution pictures of the genetic changes in cancer cells and heterogeneity in tumors. It has become increasingly clear that clonal evolution is not a single sequential process, but instead frequently involves simultaneous evolution of multiple subclones that co-exist because they are of similar fitness or are spatially separated. Co-evolution of subclones also occurs when they complement each other's survival advantages. Recent studies have also shown that clonal evolution is highly heterogeneous: different individual tumors of the same type may undergo very different paths of clonal evolution. New methodological advancements, including deep digital sequencing of a mixed tumor population, single cell sequencing, and the development of more sophisticated computational tools, will continue to shape and reshape the models of clonal evolution. In turn, these will provide both an improved framework for the understanding of cancer progression and a guide for treatment strategies aimed at the elimination of all, rather than just some, of the cancer cells within a patient. (C) 2013 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:212 / 219
页数:8
相关论文
共 69 条
[1]   THE AGE DISTRIBUTION OF CANCER AND A MULTI-STAGE THEORY OF CARCINOGENESIS [J].
ARMITAGE, P ;
DOLL, R .
BRITISH JOURNAL OF CANCER, 1954, 8 (01) :1-12
[2]   A 2-STAGE THEORY OF CARCINOGENESIS IN RELATION TO THE AGE DISTRIBUTION OF HUMAN CANCER [J].
ARMITAGE, P ;
DOLL, R .
BRITISH JOURNAL OF CANCER, 1957, 11 (02) :161-169
[3]   SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing [J].
Bankevich, Anton ;
Nurk, Sergey ;
Antipov, Dmitry ;
Gurevich, Alexey A. ;
Dvorkin, Mikhail ;
Kulikov, Alexander S. ;
Lesin, Valery M. ;
Nikolenko, Sergey I. ;
Son Pham ;
Prjibelski, Andrey D. ;
Pyshkin, Alexey V. ;
Sirotkin, Alexander V. ;
Vyahhi, Nikolay ;
Tesler, Glenn ;
Alekseyev, Max A. ;
Pevzner, Pavel A. .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2012, 19 (05) :455-477
[4]   Genome-wide copy number analysis of single cells [J].
Baslan, Timour ;
Kendall, Jude ;
Rodgers, Linda ;
Cox, Hilary ;
Riggs, Mike ;
Stepansky, Asya ;
Troge, Jennifer ;
Ravi, Kandasamy ;
Esposito, Diane ;
Lakshmi, B. ;
Wigler, Michael ;
Navin, Nicholas ;
Hicks, James .
NATURE PROTOCOLS, 2012, 7 (06) :1024-1041
[5]   Genetic progression and the waiting time to cancer [J].
Beerenwinkel, Niko ;
Antal, Tibor ;
Dingli, David ;
Traulsen, Arne ;
Kinzler, Kenneth W. ;
Velculescu, Victor E. ;
Vogelstein, Bert ;
Nowak, Martin A. .
PLOS COMPUTATIONAL BIOLOGY, 2007, 3 (11) :2239-2246
[6]   Accumulation of driver and passenger mutations during tumor progression [J].
Bozic, Ivana ;
Antal, Tibor ;
Ohtsuki, Hisashi ;
Carter, Hannah ;
Kim, Dewey ;
Chen, Sining ;
Karchin, Rachel ;
Kinzler, Kenneth W. ;
Bogelstein, Bert ;
Nowak, Martin A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (43) :18545-18550
[7]  
Brown TM, 2006, AM J PUBLIC HEALTH, V96, P2104, DOI 10.2105/AJPH.2005.078436
[8]  
Chen K, 2009, NAT METHODS, V6, P677, DOI [10.1038/NMETH.1363, 10.1038/nmeth.1363]
[9]   Efficient de novo assembly of single-cell bacterial genomes from short-read data sets [J].
Chitsaz, Hamidreza ;
Yee-Greenbaum, Joyclyn L. ;
Tesler, Glenn ;
Lombardo, Mary-Jane ;
Dupont, Christopher L. ;
Badger, Jonathan H. ;
Novotny, Mark ;
Rusch, Douglas B. ;
Fraser, Louise J. ;
Gormley, Niall A. ;
Schulz-Trieglaff, Ole ;
Smith, Geoffrey P. ;
Evers, Dirk J. ;
Pevzner, Pavel A. ;
Lasken, Roger S. .
NATURE BIOTECHNOLOGY, 2011, 29 (10) :915-U214
[10]   Mutual exclusivity analysis identifies oncogenic network modules [J].
Ciriello, Giovanni ;
Cerami, Ethan ;
Sander, Chris ;
Schultz, Nikolaus .
GENOME RESEARCH, 2012, 22 (02) :398-406