On discriminating between long-range dependence and changes in mean

被引:95
作者
Berkes, Istvan
Horvath, Lajos
Kokoszka, Piotr
Shao, Qi-Man
机构
[1] Graz Univ Technol, Dept Stat, A-8010 Graz, Austria
[2] Hungarian Acad Sci, Inst Math, H-1364 Budapest, Hungary
[3] Utah State Univ, Dept Math & Stat, Logan, UT 84322 USA
[4] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
[5] Univ Oregon, Dept Math, Eugene, OR 97403 USA
[6] Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China
基金
美国国家科学基金会;
关键词
change-point in mean; CUSUM; long-range dependence; variance of the mean;
D O I
10.1214/009053606000000254
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We develop a testing procedure for distinguishing between a long-range dependent time series and a weakly dependent time series with change-points in the mean. In the simplest case, under the null hypothesis the time series is weakly dependent with one change in mean at an unknown point, and under the alternative it is long-range dependent. We compute the CUSUM statistic T-n, which allows us to construct an estimator (k) over cap of a change-point. We then compute the statistic T-n,T-1 based on the observations up to time (k) over cap and the statistic T,2 based on the observations after time (k) over cap. The statistic M-n = max[T-n,T-1, T-n,T-2] converges to a well-known distribution under the null, but diverges to infinity if the observations exhibit long-range dependence. The theory is illustrated by examples and an application to the returns of the Dow Jones index.
引用
收藏
页码:1140 / 1165
页数:26
相关论文
共 44 条
[1]   LARGE-SAMPLE ESTIMATION FOR MEAN OF A STATIONARY RANDOM SEQUENCE [J].
ADENSTEDT, RK .
ANNALS OF STATISTICS, 1974, 2 (06) :1095-1107
[2]  
ANDERSON TW, 1971, STAT ANAL TIME SERIE
[3]   HETEROSKEDASTICITY AND AUTOCORRELATION CONSISTENT COVARIANCE-MATRIX ESTIMATION [J].
ANDREWS, DWK .
ECONOMETRICA, 1991, 59 (03) :817-858
[4]  
Bai J., 1994, Journal of Time Series Analysis, V15, P453, DOI [DOI 10.1111/J.1467-9892.1994.TB00204.X, 10.1111/j.1467-9892.1994.tb00204.x]
[5]  
BARTLETT MS, 1950, BIOMETRIKA, V37, P1
[6]   GARCH processes:: structure and estimation [J].
Berkes, I ;
Horváth, L ;
Kokoszka, P .
BERNOULLI, 2003, 9 (02) :201-227
[7]  
Berkes I, 2003, ANN APPL PROBAB, V13, P641
[8]  
Berkes I., 2005, PERIOD MATH HUNG, V51, P11, DOI DOI 10.1007/S10998-005-0017-5
[9]   THE HURST EFFECT UNDER TRENDS [J].
BHATTACHARYA, RN ;
GUPTA, VK ;
WAYMIRE, E .
JOURNAL OF APPLIED PROBABILITY, 1983, 20 (03) :649-662
[10]  
Bos C.S., 1999, Empir. Econ., V24, P427