Intracellular copper transport in mammals

被引:230
作者
Prohaska, JR [1 ]
Gybina, AA [1 ]
机构
[1] Univ Minnesota, Dept Biochem & Mol Biol, Duluth, MN 55812 USA
关键词
copper; chaperones; transport;
D O I
10.1093/jn/134.5.1003
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
Copper is an essential cofactor for approximately a dozen cuproenzymes in which copper is bound to specific amino acid residues in an active site. However, free cuprous ions react readily with hydrogen peroxide to yield the deleterious hydroxyl radical. Therefore, copper homeostasis is regulated very tightly, and unbound copper is extremely low in concentration. Copper imported by the plasma membrane transport protein Ctr1 rapidly binds to intracellular copper chaperone proteins. Atox1 delivers copper to the secretory pathway and docks with either copper-transporting ATPase ATP7B in the liver or ATP7A in other cells. ATP7B directs copper to plasma ceruloplasmin or to biliary excretion in concert with a newly discovered chaperone, Murr1, the protein missing in canine copper toxicosis. ATP7A directs copper within the transgolgi network to the proteins dopamine beta-monooxgenase, peptidylglycine alpha-amidating monooxygenase, lysyl oxidase, and tyrosinase, depending on the cell type. CCS is the copper chaperone for Cu,Zn-superoxide dismutase; it delivers copper in the cytoplasm and intermitochondrial space. Cox17 delivers copper to mitochondria to cytochrome c oxidase via the chaperones Cox11, Sco1, and Sco2. Other copper chaperones may exist and might include metallothionein and amyloid precursor protein (APP). Genetic and nutritional studies have illustrated the essential nature of these copper-binding proteins; alterations in their levels are associated with severe pathology.
引用
收藏
页码:1003 / 1006
页数:4
相关论文
共 41 条
[1]   Metallochaperones and metal-transporting ATPases: A comparative analysis of sequences and structures [J].
Arnesano, F ;
Banci, L ;
Bertini, I ;
Ciofi-Baffoni, S ;
Molteni, E ;
Huffman, DL ;
O'Halloran, TV .
GENOME RESEARCH, 2002, 12 (02) :255-271
[2]   Dietary Cu stabilizes brain superoxide dismutase 1 activity and reduces amyloid Aβ production in APP23 transgenic mice [J].
Bayer, TA ;
Schäfer, S ;
Simons, A ;
Kemmling, A ;
Kamer, T ;
Tepest, R ;
Eckert, A ;
Schüssel, K ;
Eikenberg, O ;
Sturchler-Pierrat, C ;
Abramowski, D ;
Staufenbiel, M ;
Multhaup, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (24) :14187-14192
[3]   Copper modulates the degradation of copper chaperone for Cu,Zn superoxide dismutase by the 26 S proteosome [J].
Bertinato, J ;
L'Abbé, MR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (37) :35071-35078
[4]   Copper deficiency induces the upregulation of the copper chaperone for Cu/Zn superoxide dismutase in weanling male rats [J].
Bertinato, J ;
Iskandar, M ;
L'Abbé, MR .
JOURNAL OF NUTRITION, 2003, 133 (01) :28-31
[5]   Assembly of cytochrome c oxidase within the mitochondrion [J].
Carr, HS ;
Winge, DR .
ACCOUNTS OF CHEMICAL RESEARCH, 2003, 36 (05) :309-316
[6]   Metallothionein: The multipurpose protein [J].
Coyle, P ;
Philcox, JC ;
Carey, LC ;
Rofe, AM .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2002, 59 (04) :627-647
[7]   The copper chaperone for superoxide dismutase [J].
Culotta, VC ;
Klomp, LWJ ;
Strain, J ;
Casareno, RLB ;
Krems, B ;
Gitlin, JD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (38) :23469-23472
[8]   Supplying copper to the cuproenzyme peptidylglycine α-amidating monooxygenase [J].
El Meskini, R ;
Culotta, VC ;
Mains, RE ;
Eipper, BA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (14) :12278-12284
[9]  
Failla ML, 2001, PRESENT KNOWLEDGE NU, P373
[10]   Copper chaperones: Personal escorts for metal ions [J].
Field, LS ;
Luk, E ;
Culotta, VC .
JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 2002, 34 (05) :373-379