Epidermal growth factor receptor agonists increase expression of glutamate transporter GLT-1 in astrocytes through pathways dependent on phosphatidylinositol 3-kinase and transcription factor NF-κB

被引:197
作者
Zelenaia, O
Schlag, BD
Gochenauer, GE
Ganel, R
Song, W
Beesley, JS
Grinspan, JB
Rothstein, JD
Robinson, MB
机构
[1] Univ Penn, Childrens Hosp Philadelphia, Dept Pediat, Philadelphia, PA 19104 USA
[2] Univ Penn, Childrens Hosp Philadelphia, Dept Pharmacol, Philadelphia, PA 19104 USA
[3] Univ Penn, Childrens Hosp Philadelphia, Dept Neurol, Philadelphia, PA 19104 USA
[4] Univ Penn, Childrens Hosp Philadelphia, Dept Neurosci, Philadelphia, PA 19104 USA
[5] Johns Hopkins Univ, Dept Neurol, Baltimore, MD 21218 USA
关键词
D O I
10.1124/mol.57.4.667
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The glial glutamate transporter GLT-1 may be the predominant Na+-dependent glutamate transporter in forebrain. Expression of GLT-1 correlates with astrocyte maturation in vivo and increases during synaptogenesis. In astrocyte cultures, GLT-1 expression parallels differentiation induced by cAMP analogs or by coculturing with neurons. Molecule(s) secreted by neuronal cultures contribute to this induction of GLT-1, but little is known about the signaling pathways mediating this regulation. In the present study, we determined whether growth factors previously implicated in astrocyte differentiation regulate GLT-1 expression. Of the six growth factors tested, two [epidermal growth factor (EGF) and transforming growth factor-alpha] induced expression of GLT-1 protein in cultured astrocytes. Induction of GLT-1 protein was accompanied by an increase in mRNA and in the V-max for Na+-dependent glutamate transport activity. The effects of dibutyryl-cAMP and EGF were additive but were independently blocked by inhibitors of protein kinase A or protein tyrosine kinases, respectively. The induction of GLT-1 in both EGF- and dibutyryl-cAMP-treated astrocytes was blocked by inhibitors targeting phosphatidylinositol 3-kinase (PI3K) or the nuclear transcription factor-kappa B. Furthermore, transient transfection of astrocyte cultures with a constitutively active PI3K construct was sufficient to induce expression of GLT-1. These data suggest that independent but converging pathways mediate expression of GLT-1. Although an EGF receptor- specific antagonist did not block the effects of neuron-conditioned medium, the induction of GLT-1 by neuron-conditioned medium was completely abolished by inhibition of PI3K or nuclear factor-kappa B. EGF also increased expression of GLT-1 in spinal cord organotypic cultures. Together, these data suggest that activation of specific signaling pathways with EGF- like molecules may provide a novel approach for limiting excitotoxic brain injury.
引用
收藏
页码:667 / 678
页数:12
相关论文
共 42 条
[1]   Apoptosis: Activate NF-kappa B or die? [J].
Baichwal, VR ;
Baeuerle, PA .
CURRENT BIOLOGY, 1997, 7 (02) :R94-R96
[2]   Involvement of regulatory and catalytic subunits of phosphoinositide 3-kinase in NF-κB activation [J].
Béraud, C ;
Henzel, WJ ;
Baeuerle, PA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (02) :429-434
[3]   Tyrosine kinase inhibitors .8. An unusually steep structure-activity relationship for analogues of 4-(3-bromoanilino)-6,7-dimethoxyquinazoline (PD 153035), a potent inhibitor of the epidermal growth factor receptor [J].
Bridges, AJ ;
Zhou, H ;
Cody, DR ;
Rewcastle, GW ;
McMichael, A ;
Showalter, HDH ;
Fry, DW ;
Kraker, AJ ;
Denny, WA .
JOURNAL OF MEDICINAL CHEMISTRY, 1996, 39 (01) :267-276
[4]   CONTROL OF P70 S6 KINASE BY KINASE-ACTIVITY OF FRAP IN-VIVO [J].
BROWN, EJ ;
BEAL, PA ;
KEITH, CT ;
CHEN, J ;
SHIN, TB ;
SCHREIBER, SL .
NATURE, 1995, 377 (6548) :441-446
[5]   EPIDERMAL GROWTH-FACTOR INDUCES PHOSPHORYLATION OF EXTRACELLULAR SIGNAL-REGULATED KINASE-2 VIA MULTIPLE PATHWAYS [J].
BURGERING, BMT ;
DEVRIESSMITS, AMM ;
MEDEMA, RH ;
VANWEEREN, PC ;
TERTOOLEN, LGJ ;
BOS, JL .
MOLECULAR AND CELLULAR BIOLOGY, 1993, 13 (12) :7248-7256
[6]   Response diversity and the timing of progenitor cell maturation are regulated by developmental changes in EGFR expression in the cortex [J].
Burrows, RC ;
Wancio, D ;
Levitt, P ;
Lillien, L .
NEURON, 1997, 19 (02) :251-267
[7]   MULTIPLE ACTIONS OF EPIDERMAL GROWTH-FACTOR AND TGF-ALPHA ON RABBIT GASTRIC PARIETAL-CELL FUNCTION [J].
CHEW, CS ;
NAKAMURA, K ;
PETROPOULOS, AC .
AMERICAN JOURNAL OF PHYSIOLOGY-GASTROINTESTINAL AND LIVER PHYSIOLOGY, 1994, 267 (05) :G818-G826
[8]   A SYNTHETIC INHIBITOR OF THE MITOGEN-ACTIVATED PROTEIN-KINASE CASCADE [J].
DUDLEY, DT ;
PANG, L ;
DECKER, SJ ;
BRIDGES, AJ ;
SALTIEL, AR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (17) :7686-7689
[9]   Downstream signalling events regulated by phosphatidylinositol 3-kinase activity [J].
Duronio, V ;
Scheid, MP ;
Ettinger, S .
CELLULAR SIGNALLING, 1998, 10 (04) :233-239
[10]   THE PATHWAY TO SIGNAL ACHIEVEMENT [J].
EGAN, SE ;
WEINBERG, RA .
NATURE, 1993, 365 (6449) :781-783