Physical degrees of freedom of non-local theories

被引:32
作者
Gomis, J
Kamimura, K
Ramírez, T
机构
[1] Univ Barcelona, Fac Fis, Dept ECM, Inst Fis Altes Energies, E-08028 Barcelona, Spain
[2] CER Astrophys Particle Phys & Cosmol, E-08028 Barcelona, Spain
[3] Toho Univ, Dept Phys, Funabashi, Chiba 2748510, Japan
关键词
D O I
10.1016/j.nuclphysb.2004.06.046
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We analyze the physical reduced space of non-local theories, around the fixed points of these systems, by analyzing: (i) the Hamiltonian constraints appearing in the 1 + 1 formulation, (ii) the symplectic two form in the surface on constraints. P-adic string theory for spatially homogeneous configurations has two fixed points. The physical phase space around q = 0 is trivial, instead around q = 1/g is infinite-dimensional. For the special case of the rolling tachyon solutions it is an infinite-dimensional Lagrangian submanifold. In the case of string field theory, at lowest truncation level, the physical phase space of spatially homogeneous configurations is two-dimensional around q = 0, which is the relevant case for the rolling tachyon solutions, and infinite-dimensional around q = M-2/g. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:263 / 291
页数:29
相关论文
共 23 条
[1]   NON-ARCHIMEDEAN STRING DYNAMICS [J].
BREKKE, L ;
FREUND, PGO ;
OLSON, M ;
WITTEN, E .
NUCLEAR PHYSICS B, 1988, 302 (03) :365-402
[2]   GENERALIZED HAMILTONIAN DYNAMICS [J].
DIRAC, PAM .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1950, 2 (02) :129-148
[3]   THE PROBLEM OF NONLOCALITY IN STRING THEORY [J].
ELIEZER, DA ;
WOODARD, RP .
NUCLEAR PHYSICS B, 1989, 325 (02) :389-469
[4]  
FUJITA M, 2003, JHEP, V305, P43
[5]   Tachyon condensation and brane descent relations in p-adic string theory [J].
Ghoshal, D ;
Sen, A .
NUCLEAR PHYSICS B, 2000, 584 (1-2) :300-312
[6]   Hamiltonian formalism for space-time noncommutative theories [J].
Gomis, J ;
Kamimura, K ;
Llosa, J .
PHYSICAL REVIEW D, 2001, 63 (04)
[7]   NEW EXACT-SOLUTIONS FOR THE PURELY CUBIC BOSONIC STRING FIELD-THEORY [J].
HOROWITZ, GT ;
MORROWJONES, J ;
MARTIN, SP ;
WOODARD, RP .
PHYSICAL REVIEW LETTERS, 1988, 60 (04) :261-264
[8]   D-brane decay in two-dimensional string theory [J].
Klebanov, IR ;
Maldacena, J ;
Seiberg, N .
JOURNAL OF HIGH ENERGY PHYSICS, 2003, (07) :1053-1069
[9]   ON A NONPERTURBATIVE VACUUM FOR THE OPEN BOSONIC STRING [J].
KOSTELECKY, VA ;
SAMUEL, S .
NUCLEAR PHYSICS B, 1990, 336 (02) :263-296
[10]  
KRACZMAREK JL, HEPTH0306132