Relaxation of bulk and interfacial energies

被引:27
作者
Barroso, AC
Bouchitte, G
Buttazzo, G
Fonseca, I
机构
[1] UNIV TOULON & VAR,DEPT MATH,F-83957 LA GARDE,FRANCE
[2] UNIV PISA,DIPARTIMENTO MATEMAT,I-56127 PISA,ITALY
关键词
D O I
10.1007/BF02198453
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we obtain an integral representation for the relaxation in BV(Omega; R(P)) of the functional u --> integral(Omega) f(x. del u(x))dx + integral(Sigma(u)) phi(x, [u](x), v(x))dH(N-1)(x) with respect to the BV weak * convergence.
引用
收藏
页码:107 / 173
页数:67
相关论文
共 44 条
[1]   RANK ONE PROPERTY FOR DERIVATIVES OF FUNCTIONS WITH BOUNDED VARIATION [J].
ALBERTI, G .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1993, 123 :239-274
[2]  
ALMGREM F, IN PRESS CURVATURE D
[3]   ON THE RELAXATION IN BV(OMEGA R(M)) OF QUASI-CONVEX INTEGRALS [J].
AMBROSIO, L ;
DALMASO, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1992, 109 (01) :76-97
[4]  
AMBROSIO L, 1990, J MATH PURE APPL, V69, P285
[5]  
AMBROSIO L, 1990, J MATH PURE APPL, V69, P307
[6]  
AMBROSIO L, 1991, J MATH PURE APPL, V70, P269
[7]   ON THE LOWER SEMICONTINUITY OF QUASI-CONVEX INTEGRALS IN SBV(OMEGA, R(K)) [J].
AMBROSIO, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 23 (03) :405-425
[8]  
AMBROSIO L, 1991, ARCH RATIONAL MECH A, V114, P35
[9]  
[Anonymous], WEAKLY DIFFERENTIABL
[10]  
BALDO S, 1990, ANN I H POINCARE-AN, V7, P37