Stability-based validation of clustering solutions

被引:331
作者
Lange, T [1 ]
Roth, V
Braun, ML
Buhmann, JM
机构
[1] ETH, Iinst Computat Sci, CH-8092 Zurich, Switzerland
[2] Univ Bonn, Inst Informat 3, D-53117 Bonn, Germany
关键词
D O I
10.1162/089976604773717621
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data clustering describes a set of frequently employed techniques in exploratory data analysis to extract "natural" group structure in data. Such groupings need to be validated to separate the signal in the data from spurious structure. in this context, finding an appropriate number of clusters is a particularly important model selection question. We introduce a measure of cluster stability to assess the validity of a cluster model. This stability measure quantifies the reproducibility of clustering solutions on a second sample, and it can be interpreted as a classification risk with regard to class labels produced by a clustering algorithm. The preferred number of clusters is determined by minimizing this classification risk as a function of the number of clusters. Convincing results are achieved on simulated as well as gene expression data sets. Comparisons to other methods demonstrate the competitive performance of our method and its suitability as a general validation tool for clustering solutions in real-world problems.
引用
收藏
页码:1299 / 1323
页数:25
相关论文
共 32 条
[1]   Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling [J].
Alizadeh, AA ;
Eisen, MB ;
Davis, RE ;
Ma, C ;
Lossos, IS ;
Rosenwald, A ;
Boldrick, JG ;
Sabet, H ;
Tran, T ;
Yu, X ;
Powell, JI ;
Yang, LM ;
Marti, GE ;
Moore, T ;
Hudson, J ;
Lu, LS ;
Lewis, DB ;
Tibshirani, R ;
Sherlock, G ;
Chan, WC ;
Greiner, TC ;
Weisenburger, DD ;
Armitage, JO ;
Warnke, R ;
Levy, R ;
Wilson, W ;
Grever, MR ;
Byrd, JC ;
Botstein, D ;
Brown, PO ;
Staudt, LM .
NATURE, 2000, 403 (6769) :503-511
[2]  
[Anonymous], 1995, HDB BRAIN THEORY NEU
[3]  
Ben-Hur Asa, 2002, Pac Symp Biocomput, P6
[4]   Molecular classification of cutaneous malignant melanoma by gene expression profiling [J].
Bittner, M ;
Meitzer, P ;
Chen, Y ;
Jiang, Y ;
Seftor, E ;
Hendrix, M ;
Radmacher, M ;
Simon, R ;
Yakhini, Z ;
Ben-Dor, A ;
Sampas, N ;
Dougherty, E ;
Wang, E ;
Marincola, F ;
Gooden, C ;
Lueders, J ;
Glatfelter, A ;
Pollock, P ;
Carpten, J ;
Gillanders, E ;
Leja, D ;
Dietrich, K ;
Beaudry, C ;
Berens, M ;
Alberts, D ;
Sondak, V ;
Hayward, N ;
Trent, J .
NATURE, 2000, 406 (6795) :536-540
[5]   REPLICATING CLUSTER-ANALYSIS - METHOD, CONSISTENCY, AND VALIDITY [J].
BRECKENRIDGE, JN .
MULTIVARIATE BEHAVIORAL RESEARCH, 1989, 24 (02) :147-161
[6]  
Duda R. O., 2000, PATTERN CLASSIFICATI
[7]  
Dudoit S, 2002, GENOME BIOL, V3
[8]   Cluster analysis and display of genome-wide expression patterns [J].
Eisen, MB ;
Spellman, PT ;
Brown, PO ;
Botstein, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (25) :14863-14868
[9]  
FISCHER B, 2001, LNCS ENERGY MINIMIZA
[10]   A METHOD FOR COMPARING 2 HIERARCHICAL CLUSTERINGS [J].
FOWLKES, EB ;
MALLOWS, CL .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1983, 78 (383) :553-569