Biofilm formation by Streptococcus pneumoniae:: Role of choline, extracellular DNA, and capsular polysaccharide in microbial accretion

被引:261
作者
Moscoso, Miriam [1 ]
Garcia, Ernesto [1 ]
Lopez, Rubens [1 ]
机构
[1] CSIC, Ctr Invest Biol, Dept Mol Microbiol, E-28040 Madrid, Spain
关键词
D O I
10.1128/JB.00673-06
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Streptococcus pneumoniae colonizes the human upper respiratory tract, and this asymptomatic colonization is known to precede pneumococcal disease. In this report, chemically defined and semisynthetic media were used to identify the initial steps of biofilm formation by pneumococcus during growth on abiotic surfaces such as polystyrene or glass. Unencapsulated pneumococci adhered to abiotic surfaces and formed a three-dimensional structure about 25 mu m deep, as observed by confocal laser scanning microscopy and low-temperature scanning electron microscopy. Choline residues of cell wall teichoic acids were found to play a fundamental role in pneumococcal biofilm development. The role in biofilm formation of choline-binding proteins, which anchor to the teichoic acids of the cell envelope, was determined using unambiguously characterized mutants. The results showed that LytA amidase, LytC lysozyme, LytB glucosaminidase, CbpA adhesin, PcpA putative adhesin, and PspA (pneumococcal surface protein A) mutants had a decreased capacity to form biofilms, whereas no such reduction was observed in Pce phosphocholinesterase or CbpD putative amidase mutants. Moreover, encapsulated, clinical pneumococcal isolates were impaired in their capacity to form biofilms. In addition, a role for extracellular DNA and proteins in the establishment of S. pneumoniae biofilms was demonstrated. Taken together, these observations provide information on conditions that favor the sessile mode of growth by S. pneumoniae. The experimental approach described here should facilitate the study of bacterial genes that are required for biofilm formation. Those results, in turn, may provide insight into strategies to prevent pneumococcal colonization of its human host.
引用
收藏
页码:7785 / 7795
页数:11
相关论文
共 77 条
[1]   Systematic identification of essential genes by in vitro mariner mutagenesis [J].
Akerley, BJ ;
Rubin, EJ ;
Camilli, A ;
Lampe, DJ ;
Robertson, HM ;
Mekalanos, JJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (15) :8927-8932
[2]   Phenotypic characterization of Streptococcus pneumoniae biofilm development [J].
Allegrucci, M ;
Hu, FZ ;
Shen, K ;
Hayes, J ;
Ehrlich, GD ;
Post, JC ;
Sauer, K .
JOURNAL OF BACTERIOLOGY, 2006, 188 (07) :2325-2335
[3]   SOME ASPECTS OF THE PNEUMOCOCCAL CARRIER STATE [J].
AUSTRIAN, R .
JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 1986, 18 :35-45
[4]   Analysis of the genetic structure of nontypeable pneumococcal strains isolated from conjunctiva [J].
Berrón, S ;
Fenoll, A ;
Ortega, M ;
Arellano, N ;
Casal, J .
JOURNAL OF CLINICAL MICROBIOLOGY, 2005, 43 (04) :1694-1698
[5]   Streptococcus pneumoniae colonisation:: the key to pneumococcal disease [J].
Bogaert, D ;
de Groot, R ;
Hermans, PWM .
LANCET INFECTIOUS DISEASES, 2004, 4 (03) :144-154
[6]   Biofilms:: the matrix revisited [J].
Branda, SS ;
Vik, Å ;
Friedman, L ;
Kolter, R .
TRENDS IN MICROBIOLOGY, 2005, 13 (01) :20-26
[7]   INTERACTION OF THE PNEUMOCOCCAL AMIDASE WITH LIPOTEICHOIC ACID AND CHOLINE [J].
BRIESE, T ;
HAKENBECK, R .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1985, 146 (02) :417-427
[8]   The use of Sorbarod biofilms to study the antimicrobial susceptibility of a strain of Streptococcus pneumoniae [J].
Budhani, RK ;
Struthers, JK .
JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 1997, 40 (04) :601-602
[9]   Extracellular-peptide control of competence for genetic transformation in Streptococcus pneumoniae [J].
Claverys, JP ;
Havarstein, LS .
FRONTIERS IN BIOSCIENCE-LANDMARK, 2002, 7 :D1798-D1814
[10]   Bacterial biofilms: A common cause of persistent infections [J].
Costerton, JW ;
Stewart, PS ;
Greenberg, EP .
SCIENCE, 1999, 284 (5418) :1318-1322