'Locked-on' and 'locked-off' signal transduction mutations in the periplasmic domain of the Escherichia coli NarQ and NarX sensors affect nitrate- and nitrite-dependent regulation by NarL and NarP

被引:38
作者
Chiang, RC
Cavicchioli, R
Gunsalus, RP
机构
[1] UNIV CALIF LOS ANGELES, DEPT MICROBIOL & MOL GENET, LOS ANGELES, CA 90095 USA
[2] UNIV CALIF LOS ANGELES, INST MOL BIOL, LOS ANGELES, CA 90095 USA
关键词
D O I
10.1046/j.1365-2958.1997.4131779.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Escherichia coli NarX, NarQ, NarL and NarP proteins comprise a two-component regulatory system that controls the expression of many anaerobic electron-transport and fermentation-related genes in response to nitrate and nitrite. Either of the two sensor-transmitter proteins, NarX and NarQ, can activate the response-regulator proteins, NarL and NarP, which in turn are able to bind at their respective DNA regulatory sites to modulate gene expression, NarX contains a conserved 17 amino acid sequence, designated the 'P-box' element, that is essential for nitrate sensing, In this study we characterize narQ mutants that also confer altered nitrate control of NarL-dependent nitrate reductase (narGHJI) and fumarate reductase (frdABCD) gene expression, While some narQ mutations cause the constitutive activation or repression of reporter-gene expression even when the cells are grown in the absence of the nitrate signal (i.e. a 'locked-on' phenotype), other mutations abolish nitrate-dependent control (i.e. a 'locked-off' phenotype). Interestingly the narQ (A42-->T) and narQ (R50-->Q) mutations along with the analogous narX18 (A46-->T) and narX902 (R54-->E) mutations also confer a 'locked-on' or a 'locked-off' phenotype in response to nitrite, the second environmental signal detected by NarQ and NarX. Furthermore, these narQ and narX mutations also affect NarP-dependent gene regulation of nitrite reductase (nrfABCDEFG) and aeg-46.5 gene expression in response to nitrite. We therefore propose that the NarQ sensor-transmitter protein also detects nitrate and nitrite in the periplasmic space via its periplasmic domain, A signal transduction model, which we previously proposed for NarX, is now extended to NarQ, in which a nitrate- or nitrite-detection event in the periplasmic region of the cell is followed by a signal transduction event through the inner membrane to the cytoplasmic domain of NarQ and NarX proteins to modulate their protein kinase/phosphatase activities.
引用
收藏
页码:1049 / 1060
页数:12
相关论文
共 34 条
[1]   SUGAR-MEDIATED INDUCTION OF AGROBACTERIUM-TUMEFACIENS VIRULENCE GENES - STRUCTURAL SPECIFICITY AND ACTIVITIES OF MONOSACCHARIDES [J].
ANKENBAUER, RG ;
NESTER, EW .
JOURNAL OF BACTERIOLOGY, 1990, 172 (11) :6442-6446
[2]   TRANSMEMBRANE SIGNALING BY A HYBRID PROTEIN - COMMUNICATION FROM THE DOMAIN OF CHEMORECEPTOR TRG THAT RECOGNIZES SUGAR-BINDING PROTEINS TO THE KINASE/PHOSPHATASE DOMAIN OF OSMOSENSOR ENVZ [J].
BAUMGARTNER, JW ;
KIM, C ;
BRISSETTE, RE ;
INOUYE, M ;
PARK, C ;
HAZELBAUER, GL .
JOURNAL OF BACTERIOLOGY, 1994, 176 (04) :1157-1163
[3]   Role of the periplasmic domain of the Escherichia coli NarX sensor-transmitter protein in nitrate-dependent signal transduction and gene regulation [J].
Cavicchioli, R ;
Chiang, RC ;
Kalman, LV ;
Gunsalus, RP .
MOLECULAR MICROBIOLOGY, 1996, 21 (05) :901-911
[4]   THE NARX AND NARQ SENSOR-TRANSMITTER PROTEINS OF ESCHERICHIA-COLI EACH REQUIRE 2 CONSERVED HISTIDINES FOR NITRATE-DEPENDENT SIGNAL-TRANSDUCTION TO NARL [J].
CAVICCHIOLI, R ;
SCHRODER, I ;
CONSTANTI, M ;
GUNSALUS, RP .
JOURNAL OF BACTERIOLOGY, 1995, 177 (09) :2416-2424
[5]   CONSTRUCTION AND CHARACTERIZATION OF AMPLIFIABLE MULTICOPY DNA CLONING VEHICLES DERIVED FROM P15A CRYPTIC MINIPLASMID [J].
CHANG, ACY ;
COHEN, SN .
JOURNAL OF BACTERIOLOGY, 1978, 134 (03) :1141-1156
[6]   FUNCTIONAL ROLES ASSIGNED TO THE PERIPLASMIC, LINKER, AND RECEIVER DOMAINS OF THE AGROBACTERIUM-TUMEFACIENS VIRA PROTEIN [J].
CHANG, CH ;
WINANS, SC .
JOURNAL OF BACTERIOLOGY, 1992, 174 (21) :7033-7039
[7]   IDENTIFICATION AND CHARACTERIZATION OF NARQ, A 2ND NITRATE SENSOR FOR NITRATE-DEPENDENT GENE-REGULATION IN ESCHERICHIA-COLI [J].
CHIANG, RC ;
CAVICCHIOLI, R ;
GUNSALUS, RP .
MOLECULAR MICROBIOLOGY, 1992, 6 (14) :1913-1923
[8]   ANAEROBICALLY EXPRESSED ESCHERICHIA-COLI GENES IDENTIFIED BY OPERON FUSION TECHNIQUES [J].
CHOE, M ;
REZNIKOFF, WS .
JOURNAL OF BACTERIOLOGY, 1991, 173 (19) :6139-6146
[9]   MUTATIONAL ANALYSIS REVEALS FUNCTIONAL SIMILARITY BETWEEN NARX, A NITRATE SENSOR IN ESCHERICHIA-COLI K-12, AND THE METHYL-ACCEPTING CHEMOTAXIS PROTEINS [J].
COLLINS, LA ;
EGAN, SM ;
STEWART, V .
JOURNAL OF BACTERIOLOGY, 1992, 174 (11) :3667-3675
[10]   CYTOCHROME-O (CYOABCDE) AND D (CYDAB) OXIDASE GENE-EXPRESSION IN ESCHERICHIA-COLI IS REGULATED BY OXYGEN, PH, AND THE FNR GENE-PRODUCT [J].
COTTER, PA ;
CHEPURI, V ;
GENNIS, RB ;
GUNSALUS, RP .
JOURNAL OF BACTERIOLOGY, 1990, 172 (11) :6333-6338