Calculation of universal amplitude ratios in three-loop order

被引:28
作者
Gutsfeld, C [1 ]
Kuster, J [1 ]
Munster, G [1 ]
机构
[1] UNIV MUNSTER,INST THEORET PHYS 1,D-48149 MUNSTER,GERMANY
关键词
critical phenomena; field theory; Ising model; amplitude ratios;
D O I
10.1016/0550-3213(96)00424-5
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
For the universality class of three-dimensional Ising systems the ratio of the high- and low-temperature amplitudes for the correlation length and for the susceptibility are universal quantities. They can be calculated by renormalized perturbation theory for scalar phi(4) theory in fixed dimensions D = 3 in the symmetric phase and in the phase of broken symmetry. In this article the amplitude ratios are calculated in the three-loop approximation. Using the fixed point values of the coupling constants we obtain f(+)/f(-) = 2.013(28) and C-+/C-- = 4.72(17).
引用
收藏
页码:654 / 662
页数:9
相关论文
共 18 条
[1]  
Amit D. J., 1984, FIELD THEORY RENORMA
[2]   NONASYMPTOTIC CRITICAL-BEHAVIOR FROM FIELD-THEORY AT D = 3 .2. THE ORDERED-PHASE CASE [J].
BAGNULS, C ;
BERVILLIER, C ;
MEIRON, DI ;
NICKEL, BG .
PHYSICAL REVIEW B, 1987, 35 (07) :3585-3607
[3]  
BAILLIE CF, 1992, PHYS REV B, V45, P45
[4]   UNIVERSAL AMPLITUDE COMBINATIONS OF THE 3-DIMENSIONAL RANDOM ISING SYSTEM [J].
BERVILLIER, C ;
SHPOT, M .
PHYSICAL REVIEW B, 1992, 46 (02) :955-968
[5]   UNIVERSAL RATIOS OF CRITICAL AMPLITUDES NEAR 4 DIMENSIONS [J].
BREZIN, E ;
LEGUILLO.JC ;
ZINNJUST.J .
PHYSICS LETTERS A, 1974, A 47 (04) :285-287
[6]   EQUILIBRIUM CRITICAL PHENOMENA IN BINARY-LIQUID MIXTURES [J].
KUMAR, A ;
KRISHNAMURTHY, HR ;
GOPAL, ESR .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1983, 98 (02) :57-143
[7]  
KUSTER J, IN PRESS Z PHYS C
[8]   CRITICAL EXPONENTS FROM FIELD-THEORY [J].
LEGUILLOU, JC ;
ZINNJUSTIN, J .
PHYSICAL REVIEW B, 1980, 21 (09) :3976-3998
[9]   THE 3-DIMENSIONAL ISING-MODEL REVISITED NUMERICALLY [J].
LIU, AJ ;
FISHER, ME .
PHYSICA A, 1989, 156 (01) :35-76
[10]   SCALING LAWS AND TRIVIALITY BOUNDS IN THE LATTICE PHI-4 THEORY .2. ONE-COMPONENT MODEL IN THE PHASE WITH SPONTANEOUS SYMMETRY-BREAKING [J].
LUSCHER, M ;
WEISZ, P .
NUCLEAR PHYSICS B, 1988, 295 (01) :65-92