Semidefinite programming in combinatorial optimization

被引:145
作者
Goemans, MX
机构
[1] MIT, Department of Mathematics, Cambridge
基金
美国国家科学基金会;
关键词
semidefinite programming; combinatorial optimization; stable set; maximum cut; coding theory;
D O I
10.1007/BF02614315
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We discuss the use of semidefinite programming for combinatorial optimization problems. The main topics covered include (i) the Lovasz theta function and its applications to stable sets, perfect graphs, and coding theory, (ii) the automatic generation of strong valid inequalities, (iii) the maximum cut problem and related problems, and (iv) the embedding of finite metric spaces and its relationship to the sparsest cut problem. (C) 1997 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.
引用
收藏
页码:143 / 161
页数:19
相关论文
共 67 条
[1]   INTERIOR-POINT METHODS IN SEMIDEFINITE PROGRAMMING WITH APPLICATIONS TO COMBINATORIAL OPTIMIZATION [J].
ALIZADEH, F .
SIAM JOURNAL ON OPTIMIZATION, 1995, 5 (01) :13-51
[2]  
ALIZADEH F, 1995, COMPLEMENTARITY NOND
[3]  
ALIZADEH F, IN PRESS MATH PROGRA
[4]   LAMBDA-1, ISOPERIMETRIC-INEQUALITIES FOR GRAPHS, AND SUPERCONCENTRATORS [J].
ALON, N ;
MILMAN, VD .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1985, 38 (01) :73-88
[5]   EIGENVALUES AND EXPANDERS [J].
ALON, N .
COMBINATORICA, 1986, 6 (02) :83-96
[6]  
ALON N, 1994, UNPUB APPROXIMATING
[7]  
[Anonymous], ELECT J COMBINATORIC
[8]  
[Anonymous], 1973, PHILIPS RES REP S
[9]  
AUMANN Y, IN PRESS SIAM J COMP
[10]   A LIFT-AND-PROJECT CUTTING PLANE ALGORITHM FOR MIXED 0-1 PROGRAMS [J].
BALAS, E ;
CERIA, S ;
CORNUEJOLS, G .
MATHEMATICAL PROGRAMMING, 1993, 58 (03) :295-324