Integrated, Step-Wise, Mass-Isotopomeric Flux Analysis of the TCA Cycle

被引:89
作者
Alves, Tiago C. [1 ]
Pongratz, Rebecca L. [1 ]
Zhao, Xiaojian [1 ]
Yarborough, Orlando [1 ]
Sereda, Sam [4 ]
Shirihai, Orian [4 ]
Cline, Gary W. [1 ]
Mason, Graeme [2 ]
Kibbey, Richard G. [1 ,3 ]
机构
[1] Yale Univ, Sch Med, Dept Internal Med, New Haven, CT 06520 USA
[2] Yale Univ, Sch Med, Dept Diagnost Radiol & Psychiat, New Haven, CT 06520 USA
[3] Yale Univ, Sch Med, Dept Cellular & Mol Physiol, New Haven, CT 06520 USA
[4] Boston Univ, Sch Med, Dept Med, Boston, MA 02118 USA
关键词
STIMULATED INSULIN-SECRETION; METABOLIC FLUX; NMR-SPECTROSCOPY; MALIC ENZYME; ACID CYCLE; IN-VIVO; C-13; GLUCOSE; CELLS; DEHYDROGENASE;
D O I
10.1016/j.cmet.2015.08.021
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Mass isotopomer multi-ordinate spectral analysis (MIMOSA) is a step-wise flux analysis platform to measure discrete glycolytic and mitochondrial metabolic rates. Importantly, direct citrate synthesis rates were obtained by deconvolving the mass spectra generated from [U-C-13(6)]-D-glucose labeling for position-specific enrichments of mitochondrial acetylCoA, oxaloacetate, and citrate. Comprehensive steady-state and dynamic analyses of key metabolic rates (pyruvate dehydrogenase, beta-oxidation, pyruvate carboxylase, isocitrate dehydrogenase, and PEP/pyruvate cycling) were calculated from the position-specific transfer of C-13 from sequential precursors to their products. Important limitations of previous techniques were identified. In INS-1 cells, citrate synthase rates correlated with both insulin secretion and oxygen consumption. Pyruvate carboxylase rates were substantially lower than previously reported but showed the highest fold change in response to glucose stimulation. In conclusion, MIMOSA measures key metabolic rates from the precursor/product position-specific transfer of C-13-label between metabolites and has broad applicability to any glucose-oxidizing cell.
引用
收藏
页码:936 / 947
页数:12
相关论文
共 28 条
[1]  
Bequette B J, 2006, J Anim Sci, V84 Suppl, pE50
[2]   A roadmap for interpreting 13C metabolite labeling patterns from cells [J].
Buescher, Joerg M. ;
Antoniewicz, Maciek R. ;
Boros, Laszlo G. ;
Burgess, Shawn C. ;
Brunengraber, Henri ;
Clish, Clary B. ;
DeBerardinis, Ralph J. ;
Feron, Olivier ;
Frezza, Christian ;
Ghesquiere, Bart ;
Gottlieb, Eyal ;
Hiller, Karsten ;
Jones, Russell G. ;
Kamphorst, Jurre J. ;
Kibbey, Richard G. ;
Kimmelman, Alec C. ;
Locasale, Jason W. ;
Lunt, Sophia Y. ;
Maddocks, Oliver D. K. ;
Malloy, Craig ;
Metallo, Christian M. ;
Meuillet, Emmanuelle J. ;
Munger, Joshua ;
Noeh, Katharina ;
Rabinowitz, Joshua D. ;
Ralser, Markus ;
Sauer, Uwe ;
Stephanopoulos, Gregory ;
St-Pierre, Julie ;
Tennant, Daniel A. ;
Wittmann, Christoph ;
Vander Heiden, Matthew G. ;
Vazquez, Alexei ;
Vousden, Karen ;
Young, Jamey D. ;
Zamboni, Nicola ;
Fendt, Sarah-Maria .
CURRENT OPINION IN BIOTECHNOLOGY, 2015, 34 :189-201
[3]   Simultaneous investigation of cardiac pyruvate dehydrogenase flux, Krebs cycle metabolism and pH, using hyperpolarized [1,2-13C2]pyruvate in vivo [J].
Chen, Albert P. ;
Hurd, Ralph E. ;
Schroeder, Marie A. ;
Lau, Angus Z. ;
Gu, Yi-ping ;
Lam, Wilfred W. ;
Barry, Jennifer ;
Tropp, James ;
Cunningham, Charles H. .
NMR IN BIOMEDICINE, 2012, 25 (02) :305-311
[4]   13C NMR isotopomer analysis of anaplerotic pathways in INS-1 cells [J].
Cline, GW ;
LePine, RL ;
Papas, KK ;
Kibbey, RG ;
Shulman, GI .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (43) :44370-44375
[5]   State of the art direct 13C and indirect 1H-[13C] NMR spectroscopy in vivo. A practical guide [J].
de Graaf, Robin A. ;
Rothman, Douglas L. ;
Behar, Kevin L. .
NMR IN BIOMEDICINE, 2011, 24 (08) :958-972
[6]  
HELLERSTEIN MK, 1992, AM J PHYSIOL, V263, pE988
[7]   C-13-NMR - A SIMPLE YET COMPREHENSIVE METHOD FOR ANALYSIS OF INTERMEDIARY METABOLISM [J].
JEFFREY, FMH ;
RAJAGOPAL, A ;
MALLOY, CR ;
SHERRY, AD .
TRENDS IN BIOCHEMICAL SCIENCES, 1991, 16 (01) :5-10
[8]   Compensatory responses to pyruvate carboxylase suppression in islet β-cells -: Preservation of glucose-stimulated insulin secretion [J].
Jensen, Mette V. ;
Joseph, Jamie W. ;
Ilkayeva, Olga ;
Burgess, Shawn ;
Lu, Danhong ;
Ronnebaum, Sarah M. ;
Odegaard, Matthew ;
Becker, Thomas C. ;
Sherry, A. Dean ;
Newgard, Christopher B. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (31) :22342-22351
[9]   Mitochondrial GTP regulates glucose-stimulated insulin secretion [J].
Kibbey, Richard G. ;
Pongratz, Rebecca L. ;
Romanelli, Anthony J. ;
Wollheim, Claes B. ;
Cline, Gary W. ;
Shulman, Gerald I. .
CELL METABOLISM, 2007, 5 (04) :253-264
[10]   Mitochondrial GTP Insensitivity Contributes to Hypoglycemia in Hyperinsulinemia Hyperammonemia by Inhibiting Glucagon Release [J].
Kibbey, Richard G. ;
Choi, Cheol Soo ;
Lee, Hui-Young ;
Cabrera, Over ;
Pongratz, Rebecca L. ;
Zhao, Xiaojian ;
Birkenfeld, Andreas L. ;
Li, Changhong ;
Berggren, Per-Olof ;
Stanley, Charles ;
Shulman, Gerald I. .
DIABETES, 2014, 63 (12) :4218-4229