Shocklike dynamics of inelastic gases

被引:95
作者
Ben-Naim, E [1 ]
Chen, SY
Doolen, GD
Redner, S
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[3] Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
[4] Boston Univ, Dept Phys, Boston, MA 02215 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.83.4069
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We provide a simple physical picture which suggests that the asymptotic dynamics of inelastic gases in one dimension is independent of the degree of inelasticity. Statistical characteristics, including velocity fluctuations and the velocity distribution, are identical to those of a perfectly inelastic sticky gas, which in turn is described by the inviscid Burgers equation. Asymptotic predictions of this continuum theory, including the t(-2/3) temperature decay and the development of discontinuities in the velocity profile, are verified numerically for inelastic gases.
引用
收藏
页码:4069 / 4072
页数:4
相关论文
共 25 条
[1]   KINETICS OF CLUSTERING IN TRAFFIC FLOWS [J].
BENNAIM, E ;
KRAPIVSKY, PL ;
REDNER, S .
PHYSICAL REVIEW E, 1994, 50 (02) :822-829
[2]   ONE-DIMENSIONAL BOUNCE OF INELASTICALLY COLLIDING MARBLES ON A WALL [J].
BERNU, B ;
MAZIGHI, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (24) :5745-5754
[3]   Spatial correlations in dilute granular flows: A kinetic model study [J].
Brey, JJ ;
Moreno, F ;
Ruiz-Montero, MJ .
PHYSICS OF FLUIDS, 1998, 10 (11) :2965-2975
[4]   Extension of Haff's cooling law in granular flows [J].
Brito, R ;
Ernst, MH .
EUROPHYSICS LETTERS, 1998, 43 (05) :497-502
[5]  
Burgers J M, 1974, NONLINEAR DIFFUSION, DOI DOI 10.1007/978-94-010-1745-9
[6]   RAPID GRANULAR FLOWS [J].
CAMPBELL, CS .
ANNUAL REVIEW OF FLUID MECHANICS, 1990, 22 :57-92
[7]   STATISTICS OF BALLISTIC AGGLOMERATION [J].
CARNEVALE, GF ;
POMEAU, Y ;
YOUNG, WR .
PHYSICAL REVIEW LETTERS, 1990, 64 (24) :2913-2916
[8]  
CHEN SY, CONDMAT9804235
[9]  
Deltour P, 1997, J PHYS I, V7, P137, DOI 10.1051/jp1:1997130
[10]   BREAKDOWN OF HYDRODYNAMICS IN A ONE-DIMENSIONAL SYSTEM OF INELASTIC PARTICLES [J].
DU, YS ;
LI, H ;
KADANOFF, LP .
PHYSICAL REVIEW LETTERS, 1995, 74 (08) :1268-1271