Localization of S-nitrosoglutathione and expression of S-nitrosoglutathione reductase in pea plants under cadmium stress

被引:170
作者
Barroso, Juan B.
Corpas, Francisco J.
Carreras, Alfonso
Rodriguez-Serrano, Maria
Esteban, Francisco J.
Fernandez-Ocana, Ana
Chaki, Mounira
Romero-Puertas, Maria C.
Valderrama, Raquel
Sandalio, Luisa M.
del Rio, Luis A.
机构
[1] CSIC, Dept Bioquim Biol Celular & Mol Plantas, Escac Expt Zaidin, E-18080 Granada, Spain
[2] Univ Jaen, CSIC, Grp Senalizac Mol & Sistemas Antioxidantes Planta, Estac Expt Zaidin,Area Bioquim & Biol Mol, E-23071 Jaen, Spain
关键词
abiotic stress; collenchyma; formaldehyde dehydrogenase; nitric oxide; reactive nitrogen species; RNS; S-nitrosoglutathione; S-nitrosoglutathione reductase; signalling;
D O I
10.1093/jxb/erj175
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
S-nitrosoglutathione (GSNO) is considered a natural nitric oxide (NO center dot) reservoir and a reactive nitrogen intermediate in animal cells, but little is known about this molecule and its metabolism in plant systems. In this work, using pea plants as a model system, the presence of GSNO in collenchyma cells was demonstrated by an immunohistochemical method. When pea plants were grown with a toxic Cd concentration (50 mu M) the content of GSNO in collenchyma cells was drastically reduced. Determination of the nitric oxide (NO center dot) and gluthathione contents in leaves by confocal laser scanning microscopy and HPLC, respectively, showed a marked decrease of both compounds in plants treated with cadmium. The analysis of the S-nitrosoglutathione reductase (GSNOR) activity and its transcript expression in leaves showed a reduction of 31% by cadmium. These results indicate that GSNO is associated with a specific plant cell type, and this metabolite and its related catabolic activity, GSNOR, are both down-regulated under Cd stress.
引用
收藏
页码:1785 / 1793
页数:9
相关论文
共 65 条
[1]   Enhanced formaldehyde detoxification by overexpression of glutathione-dependent formaldehyde dehydrogenase from Arabidopsis [J].
Achkor, H ;
Díaz, M ;
Fernández, MR ;
Biosca, JA ;
Parés, X ;
Martínez, MC .
PLANT PHYSIOLOGY, 2003, 132 (04) :2248-2255
[2]   Nitric oxide synthases: structure, function and inhibition [J].
Alderton, WK ;
Cooper, CE ;
Knowles, RG .
BIOCHEMICAL JOURNAL, 2001, 357 (03) :593-615
[3]   Peroxynitrite reactivity with amino acids and proteins [J].
Alvarez, B ;
Radi, R .
AMINO ACIDS, 2003, 25 (3-4) :295-311
[4]  
Barcelo AR, 1997, INT REV CYTOL, V176, P87, DOI 10.1016/S0074-7696(08)61609-5
[6]   Localization of nitric-oxide synthase in plant peroxisomes [J].
Barroso, JB ;
Corpas, FJ ;
Carreras, A ;
Sandalio, LM ;
Valderrama, R ;
Palma, JM ;
Lupiáñez, JA ;
del Río, LA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (51) :36729-36733
[7]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[8]   Nitric oxide inhibition of tobacco catalase and ascorbate peroxidase [J].
Clark, D ;
Durner, J ;
Navarre, DA ;
Klessig, DF .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2000, 13 (12) :1380-1384
[9]   Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants [J].
Corpas, FJ ;
Barroso, JB ;
Carreras, A ;
Quirós, M ;
León, AM ;
Romero-Puertas, MC ;
Esteban, FJ ;
Valderrama, R ;
Palma, JM ;
Sandalio, LM ;
Gómez, M ;
del Río, LA .
PLANT PHYSIOLOGY, 2004, 136 (01) :2722-2733
[10]   Enzymatic sources of nitric oxide in plant cells -: beyond one protein-one function [J].
Corpas, FJ ;
Barroso, JB ;
del Río, LA .
NEW PHYTOLOGIST, 2004, 162 (02) :246-248