Positive biodiversity-productivity relationship due to increased plant density

被引:149
作者
Marquard, Elisabeth [1 ,2 ]
Weigelt, Alexandra [3 ]
Roscher, Christiane [2 ]
Gubsch, Marlen [4 ]
Lipowsky, Annett [1 ,2 ]
Schmid, Bernhard [1 ]
机构
[1] Univ Zurich, Inst Environm Sci, CH-8057 Zurich, Switzerland
[2] Max Planck Inst Biogeochem, D-07745 Jena, Germany
[3] Univ Jena, Inst Ecol, D-07749 Jena, Germany
[4] ETH, Inst Plant Sci, CH-8092 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
biodiversity-productivity relationships; ecosystem functioning; Jena Experiment; overyielding; plant modules; size-density relationships; species richness; EXPERIMENTAL GRASSLAND COMMUNITIES; SPECIES DIVERSITY; CLONAL GROWTH; SELECTION; COMPLEMENTARITY; COMPETITION; RICHNESS; LEGUMES; ABSENCE; MODEL;
D O I
10.1111/j.1365-2745.2009.01521.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
1. Positive effects of biodiversity on plant productivity may result from diversity-induced changes in the size or density of individual plants, yet these two possibilities have never been tested at the same time in a biodiversity experiment with a large species pool. Here, we distinguish between size effects and density effects on plant productivity, using data from 198 experimental grassland communities that contained 1-16 species. Plant modules such as tillers or rosettes were defined as relevant units, being equivalent to plant individuals in the majority of species. 2. In agreement with previous studies, we found positive effects of species richness on above-ground productivity. We show that this positive biodiversity effect resulted from diversity-induced increases in module density rather than from increases in module size. In contrast, variation in productivity within diversity levels was related to module size rather than module density. 3. The size-density relationships varied among plant functional groups and among species but their average response to increasing species richness paralleled the pattern observed at the level of the entire plant communities: species richness had a positive effect on above-ground species biomass and species module density but not on species module size. Twenty-four out of 26 overyielding species had denser populations and 25 out of 28 underyielding species had smaller modules in mixtures than in monocultures. 4. Synthesis. In grasslands, an increase in community productivity must involve an increase in plant size or density. We found that diversity-induced increases in productivity were related to diversity-induced increases in density, whereas diversity-independent increases in productivity were related to increases in plant size. Our results suggest that increased density of overyielding species in mixtures was the main driver of the positive biodiversity-productivity relationship in our experiment. We conclude that the mechanisms leading to enhanced productivity of species-rich as compared with species-poor communities cannot be derived from mechanisms explaining high productivity within communities that contain a particular number of species.
引用
收藏
页码:696 / 704
页数:9
相关论文
共 50 条
[1]   Quantifying the evidence for biodiversity effects on ecosystem functioning and services [J].
Balvanera, Patricia ;
Pfisterer, Andrea B. ;
Buchmann, Nina ;
He, Jing-Shen ;
Nakashizuka, Tohru ;
Raffaelli, David ;
Schmid, Bernhard .
ECOLOGY LETTERS, 2006, 9 (10) :1146-1156
[2]   RELATIONSHIP BETWEEN PLANT WEIGHT AND NUMBERS IN MIXED POPULATIONS OF SINAPSIS-ALBA-(L) RABENH AND LEPIDIUM-SATIVUM-L [J].
BAZZAZ, FA ;
HARPER, JL .
JOURNAL OF APPLIED ECOLOGY, 1976, 13 (01) :211-216
[3]   Impacts of plant diversity on biomass production increase through time because of species complementarity [J].
Cardinale, Bradley J. ;
Wright, Justin P. ;
Cadotte, Marc W. ;
Carroll, Ian T. ;
Hector, Andy ;
Srivastava, Diane S. ;
Loreau, Michel ;
Weis, Jerome J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (46) :18123-18128
[4]   Effects of biodiversity on the functioning of trophic groups and ecosystems [J].
Cardinale, Bradley J. ;
Srivastava, Diane S. ;
Duffy, J. Emmett ;
Wright, Justin P. ;
Downing, Amy L. ;
Sankaran, Mahesh ;
Jouseau, Claire .
NATURE, 2006, 443 (7114) :989-992
[5]   Biodiversity effects increase linearly with biotope space [J].
Dimitrakopoulos, PG ;
Schmid, B .
ECOLOGY LETTERS, 2004, 7 (07) :574-583
[6]   Allometric scaling of plant energetics and population density [J].
Enquist, BJ ;
Brown, JH ;
West, GB .
NATURE, 1998, 395 (6698) :163-165
[7]   From selection to complementarity: shifts in the causes of biodiversity-productivity relationships in a long-term biodiversity experiment [J].
Fargione, Joseph ;
Tilman, David ;
Dybzinski, Ray ;
Hille Ris Lambers, Janneke ;
Clark, Chris ;
Harpole, W. Stanley ;
Knops, Johannes M. H. ;
Reich, Peter B. ;
Loreau, Michel .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2007, 274 (1611) :871-876
[8]   Higher effect of plant species diversity on productivity in natural than artificial ecosystems [J].
Flombaum, Pedro ;
Sala, Osvaldo E. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (16) :6087-6090
[9]  
Harper J. L., 1974, Annual Review of Ecology and Systematics, V5, P419, DOI 10.1146/annurev.es.05.110174.002223
[10]  
Harper JL, 1977, POPULATION BIOL PLAN