Adjusted survival curves with inverse probability weights

被引:652
作者
Cole, SR
Hernán, MA
机构
[1] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Epidemiol, Baltimore, MD 21205 USA
[2] Harvard Univ, Sch Publ Hlth, Dept Epidemiol, Boston, MA 02115 USA
关键词
graphics; standardization; stratification; survival analysis;
D O I
10.1016/j.cmpb.2003.10.004
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Kaplan-Meier survival curves and the associated nonparametric log rank test statistic are methods of choice for unadjusted survival analyses, white the semi-parametric Cox proportional hazards regression model is used ubiquitously as a method for covariate adjustment. The Cox model extends naturally to include covariates, but there is no generally accepted method to graphically depict adjusted survival curves. The authors describe a method and provide a simple worked example using inverse probability weights (IPW) to create adjusted survival curves. When the weights are non-parametrically estimated, this method is equivalent to direct standardization of the survival curves to the combined study population. (C) 2003 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:45 / 49
页数:5
相关论文
共 10 条
  • [1] Effect of highly active antiretroviral therapy on time to acquired immunodeficiency syndrome or death using marginal structural models
    Cole, SR
    Hernán, MA
    Robins, JM
    Anastos, K
    Chmiel, J
    Detels, R
    Ervin, C
    Feldman, J
    Greenblatt, R
    Kingsley, L
    Lai, SH
    Young, M
    Cohen, M
    Muñoz, A
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2003, 158 (07) : 687 - 694
  • [2] Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men
    Hernán, MA
    Brumback, B
    Robins, JM
    [J]. EPIDEMIOLOGY, 2000, 11 (05) : 561 - 570
  • [3] THE ROBUST INFERENCE FOR THE COX PROPORTIONAL HAZARDS MODEL
    LIN, DY
    WEI, LJ
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1989, 84 (408) : 1074 - 1078
  • [4] ADJUSTED SURVIVAL-CURVE ESTIMATION USING COVARIATES
    MAKUCH, RW
    [J]. JOURNAL OF CHRONIC DISEASES, 1982, 35 (06): : 437 - 443
  • [5] Nieto FJ, 1996, AM J EPIDEMIOL, V143, P1059
  • [6] A NEW APPROACH TO CAUSAL INFERENCE IN MORTALITY STUDIES WITH A SUSTAINED EXPOSURE PERIOD - APPLICATION TO CONTROL OF THE HEALTHY WORKER SURVIVOR EFFECT
    ROBINS, J
    [J]. MATHEMATICAL MODELLING, 1986, 7 (9-12): : 1393 - 1512
  • [7] Marginal structural models and causal inference in epidemiology
    Robins, JM
    Hernán, MA
    Brumback, B
    [J]. EPIDEMIOLOGY, 2000, 11 (05) : 550 - 560
  • [8] Robins JM, 1998, 1997 P AM STAT ASS S, V1, P10
  • [9] REDUCING BIAS IN OBSERVATIONAL STUDIES USING SUBCLASSIFICATION ON THE PROPENSITY SCORE
    ROSENBAUM, PR
    RUBIN, DB
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1984, 79 (387) : 516 - 524
  • [10] Rothman K. J., 1998, MODERN EPIDEMIOLOGY