On the complexity of optimization problems for 3-dimensional convex polyhedra and decision trees

被引:28
作者
Das, G
Goodrich, MT
机构
[1] JOHNS HOPKINS UNIV, DEPT COMP SCI, BALTIMORE, MD 21218 USA
[2] MEMPHIS STATE UNIV, DEPT MATH SCI, MEMPHIS, TN 38152 USA
来源
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS | 1997年 / 8卷 / 03期
基金
美国国家科学基金会;
关键词
convex polyhedra; approximation; Steinitz's theorem; planar graphs; art gallery theorems; decision trees;
D O I
10.1016/S0925-7721(97)00006-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that several well-known optimization problems involving 3-dimensional convex polyhedra and decision trees are NP-hard or NP-complete. One of the techniques we employ is a linear-time method for realizing a planar 3-connected triangulation as a convex polyhedron, which may be of independent interest. (C) 1997 Published by Elsevier Science B.V.
引用
收藏
页码:123 / 137
页数:15
相关论文
共 42 条
[1]  
AGARWAL PK, 1994, PROCEEDINGS OF THE FIFTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P24
[2]   FINDING MINIMAL CONVEX NESTED POLYGONS [J].
AGGARWAL, A ;
BOOTH, H ;
OROURKE, J ;
SURI, S ;
YAP, CK .
INFORMATION AND COMPUTATION, 1989, 83 (01) :98-110
[3]   CONGRUENCE, SIMILARITY, AND SYMMETRIES OF GEOMETRIC OBJECTS [J].
ALT, H ;
MEHLHORN, K ;
WAGENER, H ;
WELZL, E .
DISCRETE & COMPUTATIONAL GEOMETRY, 1988, 3 (03) :237-256
[4]  
[Anonymous], 1987, ART GALLERY THEOREMS
[5]  
[Anonymous], P 13 INT JOINT C ART
[6]   TRAINING A 3-NODE NEURAL NETWORK IS NP-COMPLETE [J].
BLUM, AL ;
RIVEST, RL .
NEURAL NETWORKS, 1992, 5 (01) :117-127
[7]  
BONDY JA, 1976, GRAPH THEORY APPLICA
[8]  
Breiman L., 1984, Classification and Regression Trees, DOI DOI 10.2307/2530946
[9]  
Bronnimann H., 1994, Proceedings of the Tenth Annual Symposium on Computational Geometry, P293, DOI 10.1145/177424.178029
[10]  
Chrobak M., 1996, Proceedings of the Twelfth Annual Symposium on Computational Geometry, FCRC '96, P319, DOI 10.1145/237218.237401