The LRP5 high-bone-mass G171V mutation disrupts LRP5 interaction with mesd

被引:130
作者
Zhang, YH
Wang, Y
Li, XF
Zhang, JH
Mao, JH
Li, Z
Zheng, J
Li, L
Harris, S
Wu, DQ
机构
[1] Univ Connecticut, Hlth Ctr, Dept Genet & Dev Biol, Farmington, CT 06410 USA
[2] Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Biochem & Cell Biol, Lab Mol Cell Biol, Shanghai, Peoples R China
[3] St Jude Hosp, Dept Biol Struct, Memphis, TN USA
关键词
D O I
10.1128/MCB.24.11.4677-4684.2004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
dThe mechanism by which the high-bone-mass (HBM) mutation (G171V) of the Wnt coreceptor LRP5 regulates canonical Wnt signaling was investigated. The mutation was previously shown to reduce DKK1-mediated antagonism, suggesting that the first YWTD repeat domain where G171 is located may be responsible for DKK-mediated antagonism. However, we found that the third YWTD repeat, but not the first repeat domain, is required for DKK1-mediated antagonism. Instead, we found that the G171V mutation disrupted the interaction of LRP5 with Mesd, a chaperone protein for LRP5/6 that is required for transport of the coreceptors to cell surfaces, resulting in fewer LRP5 molecules on the cell surface. Although the reduction in the number of cell surface LRP5 molecules led to a reduction in Wnt signaling in a paracrine paradigm, the mutation did not appear to affect the activity of coexpressed Wnt in an autocrine paradigm. Together with the observation that osteoblast cells produce autocrine canonical Wnt, Wnt7b, and that osteocytes produce paracrine DKK1, we think that the G171V mutation may cause an increase in Wnt activity in osteoblasts by reducing the number of targets for paracrine DKK1 to antagonize without affecting the activity of autocrine Wnt.
引用
收藏
页码:4677 / 4684
页数:8
相关论文
共 42 条
[1]   High bone mass in mice expressing a mutant LRP5 gene [J].
Babij, P ;
Zhao, WG ;
Small, C ;
Kharode, Y ;
Yaworsky, PJ ;
Bouxsein, ML ;
Reddy, PS ;
Bodine, PVN ;
Robinson, JA ;
Bhat, B ;
Marzolf, J ;
Moran, RA ;
Bex, F .
JOURNAL OF BONE AND MINERAL RESEARCH, 2003, 18 (06) :960-974
[2]   Novel mechanism of Wnt signalling inhibition mediated by Dickkopf-1 interaction with LRP6/Arrow [J].
Bafico, A ;
Liu, GZ ;
Yaniv, A ;
Gazit, A ;
Aaronson, SA .
NATURE CELL BIOLOGY, 2001, 3 (07) :683-686
[3]   Activated β-catenin induces osteoblast differentiation of C3H10T1/2 cells and participates in BMP2 mediated signal transduction [J].
Bain, G ;
Müller, T ;
Wang, X ;
Papkoff, J .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2003, 301 (01) :84-91
[4]   High bone density due to a mutation in LDL-receptor-related protein 5 [J].
Boyden, LM ;
Mao, JH ;
Belsky, J ;
Mitzner, L ;
Farhi, A ;
Mitnick, MA ;
Wu, DQ ;
Insogna, K ;
Lifton, RP .
NEW ENGLAND JOURNAL OF MEDICINE, 2002, 346 (20) :1513-1521
[5]   Boca, an endoplasmic reticulum protein required for wingless signaling and trafficking of LDL receptor family members in Drosophila [J].
Culi, J ;
Mann, RS .
CELL, 2003, 112 (03) :343-354
[6]  
Dale TC, 1998, BIOCHEM J, V329, P209
[7]   Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction [J].
Glinka, A ;
Wu, W ;
Delius, H ;
Monaghan, AP ;
Blumenstock, C ;
Niehrs, C .
NATURE, 1998, 391 (6665) :357-362
[8]   LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development [J].
Gong, YQ ;
Slee, RB ;
Fukai, N ;
Rawadi, G ;
Roman-Roman, S ;
Reginato, AM ;
Wang, HW ;
Cundy, T ;
Glorieux, FH ;
Lev, D ;
Zacharin, M ;
Oexle, K ;
Marcelino, J ;
Suwairi, W ;
Heeger, S ;
Sabatakos, G ;
Apte, S ;
Adkins, WN ;
Allgrove, J ;
Arslan-Kirchner, M ;
Batch, JA ;
Beighton, P ;
Black, GCM ;
Boles, RG ;
Boon, LM ;
Borrone, C ;
Brunner, HG ;
Carle, GF ;
Dallapiccola, B ;
De Paepe, A ;
Floege, B ;
Halfhide, ML ;
Hall, B ;
Hennekam, RC ;
Hirose, T ;
Jans, A ;
Jüppner, H ;
Kim, CA ;
Keppler-Noreuil, K ;
Kohlschuetter, A ;
LaCombe, D ;
Lambert, M ;
Lemyre, E ;
Letteboer, T ;
Peltonen, L ;
Ramesar, RS ;
Romanengo, M ;
Somer, H ;
Steichen-Gersdorf, E ;
Steinmann, B .
CELL, 2001, 107 (04) :513-523
[9]   Propagation and localization of Wnt signaling [J].
Gumbiner, BM .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 1998, 8 (04) :430-435
[10]   Mesd encodes an LRP5/6 chaperone essential for specification of mouse embryonic polarity [J].
Hsieh, JC ;
Lee, L ;
Zhang, LQ ;
Wefer, S ;
Brown, K ;
DeRossi, C ;
Wines, ME ;
Rosenquist, T ;
Holdener, BC .
CELL, 2003, 112 (03) :355-367