The XXZ spin chain at Δ=-1/2:: Bethe roots, symmetric functions, and determinants

被引:23
作者
de Gier, J
Batchelor, MT
Nienhuis, B
Mitra, S
机构
[1] Australian Natl Univ, Sch Math Sci, Dept Math, Canberra, ACT 0200, Australia
[2] Univ Amsterdam, Inst Theoret Phys, NL-1018 XE Amsterdam, Netherlands
关键词
D O I
10.1063/1.1487445
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A number of conjectures have been given recently concerning the connection between the antiferromagnetic XXZ spin chain at Delta=-1/2 and various symmetry classes of alternating sign matrices. Here we use the integrability of the XXZ chain to gain further insight into these developments. In doing so we obtain a number of new results using Baxter's Q function for the XXZ chain for periodic, twisted and open boundary conditions. These include expressions for the elementary symmetric functions evaluated at the ground state solution of the Bethe roots. In this approach Schur functions play a central role and enable us to derive determinant expressions which appear in certain natural double products over the Bethe roots. When evaluated these give rise to the numbers counting different symmetry classes of alternating sign matrices. (C) 2002 American Institute of Physics.
引用
收藏
页码:4135 / 4146
页数:12
相关论文
共 31 条
[1]   SURFACE EXPONENTS OF THE QUANTUM XXZ, ASHKIN-TELLER AND POTTS MODELS [J].
ALCARAZ, FC ;
BARBER, MN ;
BATCHELOR, MT ;
BAXTER, RJ ;
QUISPEL, GRW .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (18) :6397-6409
[2]   CONFORMAL-INVARIANCE, THE XXZ CHAIN AND THE OPERATOR CONTENT OF TWO-DIMENSIONAL CRITICAL SYSTEMS [J].
ALCARAZ, FC ;
BARBER, MN ;
BATCHELOR, MT .
ANNALS OF PHYSICS, 1988, 182 (02) :280-343
[3]  
[Anonymous], 1999, ENUMERATIVE COMBINAT
[4]   The quantum symmetric XXZ chain at Δ=-1/2, alternating-sign matrices and plane partitions [J].
Batchelor, MT ;
de Gier, J ;
Nienhuis, B .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (19) :L265-L270
[5]  
BATCHELOR MT, ARXIVCONDMAT0101385
[6]  
Baxter R.J., 1989, Adv. Stud. Pure Math., V19, P95
[7]   Metal theory [J].
Bethe, H. .
ZEITSCHRIFT FUR PHYSIK, 1931, 71 (3-4) :205-226
[8]  
Bressoud D.M., 1999, Proofs and Confirmations, The Story of the Alternating Sign Matrix Conjecture
[9]  
Fridkin R, 2001, J STAT PHYS, V102, P781
[10]   Ground state of the quantum symmetric finite-size XXZ spin chain with anisotropy parameter Δ=1/2 [J].
Fridkin, V ;
Stroganov, Y ;
Zagier, D .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (13) :L121-L125