Robust, fragile, or optimal?

被引:564
作者
Keel, LH [1 ]
Bhattacharyya, SP [1 ]
机构
[1] TEXAS A&M UNIV,DEPT ELECT ENGN,COLLEGE STN,TX 77843
基金
美国国家航空航天局; 美国国家科学基金会;
关键词
fragility; optimality; robustness;
D O I
10.1109/9.618239
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we show by examples that optimum and robust controllers, designed by using the H-2, H-infinity, l(1), and mu formulations, can produce extremely fragile controllers, in the sense that vanishingly small perturbations of the coefficients of the designed controller destabilize the closed-loop control system. The examples show that this fragility usually manifests itself as extremely poor gain and phase margins of the closed-loop system. The calculations given here should raise a cautionary note and draw attention to the larger issue of controller sensitivity which may be important in other nonoptimal design techniques as well.
引用
收藏
页码:1098 / 1105
页数:8
相关论文
共 14 条
[1]  
Anderson B.D.O., 1989, Optimal Control: Linear Quadratic Methods
[2]  
BALAS GJ, 1993, MU ANAL SYNTHESIS TO
[3]  
Bhattacharyya S., 1995, ROBUST CONTROL PARAM
[4]  
BOSE NK, 1985, CONT MATH, V47, P25
[5]  
Dahleh M.A., 1995, Control of Uncertain Systems: a Linear Programming Approach
[6]  
DOYLE J, 1992, FEEDBACK CONTROL THE
[7]   STATE-SPACE SOLUTIONS TO STANDARD H-2 AND H-INFINITY CONTROL-PROBLEMS [J].
DOYLE, JC ;
GLOVER, K ;
KHARGONEKAR, PP ;
FRANCIS, BA .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1989, 34 (08) :831-847
[8]   MU-SYNTHESIS OF AN ELECTROMAGNETIC SUSPENSION SYSTEM [J].
FUJITA, M ;
NAMERIKAWA, T ;
MATSUMURA, F ;
UCHIDA, K .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1995, 40 (03) :530-536
[9]  
HINRICHSEN D, 1990, CONTROL UNCERTAIN SY
[10]   ON THE STRUCTURE OF H INFINITY CONTROL-SYSTEMS AND RELATED EXTENSIONS [J].
KIMURA, H ;
LU, Y ;
KAWATANI, R .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1991, 36 (06) :653-667