Scaling properties of porous media with power-law particle size distributions

被引:10
作者
Ghilardi, P [1 ]
Menduni, G [1 ]
机构
[1] POLITECN MILAN,DEPT HYDRAUL ENVIRONM & SURVEYING ENGN,I-20133 MILAN,ITALY
关键词
D O I
10.1016/S0022-1694(96)03098-3
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Porous media whose grain sizes are distributed according to the law proposed by Turcotte (1986, J. Geophys. Res., 91(B2): 1921-1926) are investigated in order to check if the void volume is a fractal object. It is shown that a power-law distribution of the particle sizes implies a scaling structure of the voids only within a given range of values of the porosity and of the distribution exponent.
引用
收藏
页码:223 / 236
页数:14
相关论文
共 24 条
[1]  
ADLER PM, 1989, FRACTAL APPROACH HET
[2]  
BADII R, 1985, J STAT PHYS, V40, P725, DOI 10.1007/BF01009897
[3]  
BECHINI C, 1993, HYDRAULIC PROPERTIES
[4]  
Carman PC., 1939, J AGR SCI, P29
[5]  
CARMAN PC, 1938, J SOC CHEM IND, V57
[6]  
CARMAN PC, 1939, J SOC CHEM IND JAN
[7]  
Feder J., 1988, FRACTALS PLENUM
[8]   SELF-SIMILAR HETEROGENEITY IN GRANULAR POROUS-MEDIA AT THE REPRESENTATIVE ELEMENTARY VOLUME SCALE [J].
GHILARDI, P ;
KAI, AK ;
MENDUNI, G .
WATER RESOURCES RESEARCH, 1993, 29 (04) :1205-1214
[9]   GENERALIZED DIMENSIONS OF STRANGE ATTRACTORS [J].
GRASSBERGER, P .
PHYSICS LETTERS A, 1983, 97 (06) :227-230
[10]   MEASURING THE STRANGENESS OF STRANGE ATTRACTORS [J].
GRASSBERGER, P ;
PROCACCIA, I .
PHYSICA D, 1983, 9 (1-2) :189-208