Catalysis, specificity, and ACP docking site of Streptomyces coelicolor malonyl-CoA:ACP transacylase

被引:118
作者
Keatinge-Clay, AT
Shelat, AA
Savage, DF
Tsai, SC
Miercke, LJW
O'Connell, JD
Khosla, C
Stroud, RM
机构
[1] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USA
[2] Univ Calif San Francisco, Grad Grp Biophys, San Francisco, CA 94143 USA
[3] Univ Calif San Francisco, Grad Grp Chem & Chem Biol, San Francisco, CA 94143 USA
[4] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[5] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[6] Stanford Univ, Dept Biochem, Stanford, CA 94305 USA
关键词
polyketide synthase; actinorhodin; malonyl-CoA : ACP transacylase; acyltransferase; acyl carrier protein; macromolecular docking; CARRIER PROTEIN TRANSACYLASE; CRYSTAL-STRUCTURE; FATTY-ACID; SUBSTRATE-SPECIFICITY; ACYLTRANSFERASE; PURIFICATION; DOMAINS; PROTOTYPE; DATABASE; COMPLEX;
D O I
10.1016/S0969-2126(03)00004-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Malonyl-CoA:ACP transacylase (MAT), the fabD gene product of Streptomyces coelicolor 3(2), participates in both fatty acid and polyketide synthesis pathways, transferring malonyl groups that are used as extender units in chain growth from malonyl-CoA to pathway-specific acyl carrier proteins (ACPs). Here, the 2.0 Angstrom structure reveals an invariant arginine bound to an acetate that mimics the malonyl carboxylate and helps define the extender unit binding site. Catalysis may only occur when the oxyanion hole is formed through substrate binding, preventing hydrolysis of the acylenzyme intermediate. Macromolecular docking simulations with actinorhodin ACP suggest that the majority of the ACP docking surface is formed by a helical flap. These results should help to engineer polyketide synthases (PKSs) that produce novel polyketides.
引用
收藏
页码:147 / 154
页数:8
相关论文
共 35 条
  • [1] THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY
    BAILEY, S
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 : 760 - 763
  • [2] Brunger AT, 1998, ACTA CRYSTALLOGR D, V54, P905, DOI 10.1107/s0907444998003254
  • [3] Biochemistry - Harnessing the biosynthetic code: Combinations, permutations, and mutations
    Cane, DE
    Walsh, CT
    Khosla, C
    [J]. SCIENCE, 1998, 282 (5386) : 63 - 68
  • [4] Purification and in vitro reconstitution of the essential protein components of an aromatic polyketide synthase
    Carreras, CW
    Khosla, C
    [J]. BIOCHEMISTRY, 1998, 37 (08) : 2084 - 2088
  • [5] Case D.A., 2002, AMBER 7
  • [6] Malonyl-CoA:ACP transacylase from Streptomyces coelicolor has two alternative catalytically active nucleophiles
    Dreier, J
    Li, Q
    Khosla, C
    [J]. BIOCHEMISTRY, 2001, 40 (41) : 12407 - 12411
  • [7] Ewing TJA, 1997, J COMPUT CHEM, V18, P1175, DOI 10.1002/(SICI)1096-987X(19970715)18:9<1175::AID-JCC6>3.0.CO
  • [8] 2-O
  • [9] SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling
    Guex, N
    Peitsch, MC
    [J]. ELECTROPHORESIS, 1997, 18 (15) : 2714 - 2723
  • [10] DIVERGENT SEQUENCE MOTIFS CORRELATED WITH THE SUBSTRATE-SPECIFICITY OF (METHYL)MALONYL-COA-ACYL CARRIER PROTEIN TRANSACYLASE DOMAINS IN MODULAR POLYKETIDE SYNTHESES
    HAYDOCK, SF
    APARICIO, JF
    MOLNAR, I
    SCHWECKE, T
    KHAW, LE
    KONIG, A
    MARSDEN, AFA
    GALLOWAY, IS
    STAUNTON, J
    LEADLAY, PF
    [J]. FEBS LETTERS, 1995, 374 (02) : 246 - 248