ICA of fMRI group study data

被引:119
作者
Svensén, M
Kruggel, F
Benali, H
机构
[1] Max Planck Inst Cognit Neurosci, D-04317 Leipzig, Germany
[2] INSERM, U494, Paris, France
关键词
D O I
10.1006/nimg.2002.1122
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
This paper proposes to extend independent component analysis (ICA) of functional magnetic resonance imaging (fMRI) data from single subjects to simultaneous analysis of data from a group of subjects. This results in a set of time courses which are common to the whole group, together with an individual spatial response pattern for each of the subjects in the group. The method is illustrated using data from two fMRI experiments. The results show that: (a) ICA is capable of extracting nontrivial task related components without any a priori information about the fMRI experiment; (b) in analysis of group data, ICA identifies components common to the whole group as well as components manifested in single subjects only. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:551 / 563
页数:13
相关论文
共 21 条
[1]  
Berns G S, 1999, J Neurosci, V19, pRC17
[2]   Blind source separation of multiple signal sources of fMRI data sets using independent component analysis [J].
Biswal, BB ;
Ulmer, JL .
JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 1999, 23 (02) :265-271
[3]   Blind signal separation: Statistical principles [J].
Cardoso, JF .
PROCEEDINGS OF THE IEEE, 1998, 86 (10) :2009-2025
[4]   Modes or models: a critique on independent component analysis for fMRI [J].
Friston, KJ .
TRENDS IN COGNITIVE SCIENCES, 1998, 2 (10) :373-375
[5]  
Hyvarinen A., 1999, Neural Computing Surveys, V2
[6]   Fast and robust fixed-point algorithms for independent component analysis [J].
Hyvärinen, A .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999, 10 (03) :626-634
[7]  
Jolliffe I., 2002, PRINCIPAL COMPONENT, DOI [DOI 10.1016/0169-7439(87)80084-9, 10.1007/0-387-22440-8_13, DOI 10.1007/0-387-22440-8_13]
[8]  
Kruggel F, 2000, MAGNET RESON MED, V44, P277, DOI 10.1002/1522-2594(200008)44:2<277::AID-MRM15>3.0.CO
[9]  
2-X
[10]   Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources [J].
Lee, TW ;
Girolami, M ;
Sejnowski, TJ .
NEURAL COMPUTATION, 1999, 11 (02) :417-441